Wound healing refers to the replacement of damaged tissue through strongly coordinated cellular events. The patient’s condition and different types of wounds complicate the already intricate healing process. Conventional wound dressing materials seem to be insufficient to facilitate and support this mechanism. Nanotechnology could provide the physicochemical properties and specific biological responses needed to promote the healing process. For nanoparticulate dressing design, growing interest has focused on natural biopolymers due to their biocompatibility and good adaptability to technological needs. Polysaccharides are the most common natural biopolymers used for wound-healing materials. In particular, alginate and chitosan polymers exhibit intrinsic antibacterial and anti-inflammatory effects, useful for guaranteeing efficient treatment. Recent studies highlight that several natural plant-derived molecules can influence healing stages. In particular, essential oils show excellent antibacterial, antifungal, antioxidant, and anti-inflammatory properties that can be amplified by combining them with nanotechnological strategies. This review summarizes recent studies concerning essential oils as active secondary compounds in polysaccharide-based wound dressings.
Electronic circular dichroism (ECD) and discrete wavelength resolved specific optical rotations, referred to as optical rotatory dispersion (ORD), have been remeasured for inuloxin C and analysed with corresponding quantum chemical (QC) predicted data for all diastereomers of inuloxin C. The QC‐predicted sign of ORD and of a major ECD band are found to match the experimental observations for more than one diastereomer. However, these ECD and ORD analyses combined with electronic dissymmetry factor analyses narrowed the choices of absolute configuration (AC) of inuloxin C to (5R,7S,8R,10R) and (5S,7S,8S,10S). Supplementing these analyses with corresponding analyses for acetylated inuloxin C resulted in a unique choice for the AC of inuloxin C as (5S,7S,8S,10S). This result is independent of NMR analysis. Furthermore, this AC is in full agreement with previously determined relative configuration by NMR and the AC derived therefrom using ECD and ORD. Therefore, the present study identifies a pathway for determining the ACs of chiral molecules with multiple stereogenic centers when relative configurations are not known, or when it is desired to deduce ACs independent of the known relative configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.