Background: Anthropogenic light is known or suspected to exert profound effects on many taxa, including birds. Documentation of bird aggregation around artificial light at night, as well as observations of bird reactions to strobe lights and lasers, suggests that light may both attract and repel birds, although this assumption has yet to be tested. These effects may cause immediate changes to bird movement, habitat selection and settlement, and ultimately alter bird distribution at large spatial scales. Global increases in the extent of anthropogenic light contribute to interest by wildlife managers and the public in managing light to reduce harm to birds, but there are no evidence syntheses of the multiple ways light affects birds to guide this effort. Existing reviews usually emphasize either bird aggregation or deterrence and do so for a specific context, such as aggregation at communication towers and deterrence from airports. We outline a protocol for a systematic map that collects and organizes evidence from the many contexts in which anthropogenic light is reported to affect bird movement, habitat selection, or distribution. Our map will provide an objective synthesis of the evidence that identifies subtopics that may support systematic review and knowledge gaps that could direct future research questions. These products will substantially advance an understanding of both patterns and processes associated with the responses of birds to anthropogenic light. Methods: The protocol describes the steps taken to ensure the search for evidence is comprehensive, transparent and replicable. We will find relevant studies in the grey and peer-reviewed literature using publication databases, Google Scholar, stakeholder suggestions, and organizational websites. We will select studies for inclusion in the map by identification of relevant: (i) population including any species of bird; (ii) intervention or exposure to anthropogenic light; and (iii) outcomes including changes in bird movement, habitat occupancy, population density, or distribution. We will extract and organize metadata into a systematic map that can support subsequent search by interested individuals. The quantity of evidence on particular topics will be characterized through heat maps and narrative syntheses, but subsequent work will be needed to evaluate evidence validity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.