Tibetans are considered an East Asian ethnic group and primarily live in the high Tibetan plateau, the western Sichuan and Yunnan mountains of central and southern China, and areas throughout the Himalayas and around the Tibetan plateau. These people exhibit rare molecular machinery that allows them to adapt to hypoxic environments in the Qinghai-Tibet Plateau and make them a potential candidate for providing insights related to medical genetic, molecular medicine and human population studies. In the current study, we have genotyped 549 individuals with Investigator Argus X-12 Kit. For 12 X-STRs, a total of 174 unique alleles were found, among them DXS10134 and DXS10135 were the most polymorphic loci. All of the loci were in Hardy-Weinberg Equilibrium (HWE). The numbers of observed haplotypes in Highlander Tibetans males were 161,112, 96 and 108, respectively, whereas haplotype diversities (HD) were 0.9959, 0.9880, 0.9809 and 0.9873, respectively. The combined discrimination power for males (PDm) was 0.999 999 99701 and for females (PDf) was 0.999 999 999 999 9958. This study represents an extensive report on X chromosomal STR markers variation in the Highlander Tibetans population for forensic applications and population genetic studies.
Commiphora gileadensis L. is a medicinal plant, known as balsam, with pharmaceutical potential for its phytochemical activities and chemical constituents. Genetic diversity is a genetic tool used in medicinal plant evolution and conservation. Three accessions from C. gileadensis were collected from three localities in Saudi Arabia (Jeddah, Jizan and Riyadh). Genetic characterization was carried out using physio-biochemical parameters, molecular markers (inter-simple sequence repeat (ISSR) and start codon targeted (SCoT)), DNA barcoding (18 S rRNA and ITS rDNA regions), relative gene expressions (phenylalanine ammonia-lyase 1 (PAL1), defensin (PR-12)) and pathogenesis-related protein (AFPRT). The results of this study showed that C. gileadensis accession C3, collected from Riyadh, had the highest content from the physio-biochemical parameters perspective, with values of 92.54 mg/g and 77.13 mg/g for total phenolic content (TPC) and total flavonoid content (TFC), respectively. Furthermore, the highest content of antioxidant enzyme activity was present in accession C3 with values of 16.87, 60.87, 35.76 and 27.98 U mg−1 for superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) (mol/min/mg FW) and ascorbate peroxidase (APX) (U mg−1 protein), respectively. The highest total number of bands and number of unique bands were 138 and 59, respectively, for the SCoT marker. The SCoT marker was the most efficient for the genetic diversity of C. gileadensis by producing the highest polymorphism (75.63%). DNA barcoding using 18 S and ITS showed the nearby Commiphora genus and clustered C. gileadensis accessions from Jeddah and Jizan in one clade and the C. gileadensis accession from Ryiadh in a separate cluster. Moreover, relative gene expression of the PAL1, defensin (PR-12) and AFPRT (PR1) genes was upregulated in the C. gileadensis accession from Ryiadh. In conclusion, ecological and environmental conditions in each locality affect the genomic expression and genetic diversity, which can help the evolution of important medicinal plants and improve breeding and conservation systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.