In this globalized world, the spread of new, exotic and re-emerging diseases has become one of the most important threats to animal production and public health. This systematic review analyses conventional and novel early detection methods applied to surveillance. In all, 125 scientific documents were considered for this study. Exotic (n = 49) and re-emerging (n = 27) diseases constituted the most frequently represented health threats. In addition, the majority of studies were related to zoonoses (n = 66). The approaches found in the review could be divided in surveillance modalities, both active (n = 23) and passive (n = 5); and tools and methodologies that support surveillance activities (n = 57). Combinations of surveillance modalities and tools (n = 40) were also found. Risk-based approaches were very common (n = 60), especially in the papers describing tools and methodologies (n = 50). The main applications, benefits and limitations of each approach were extracted from the papers. This information will be very useful for informing the development of tools to facilitate the design of cost-effective surveillance strategies. Thus, the current literature review provides key information about the advantages, disadvantages, limitations and potential application of methodologies for the early detection of new, exotic and re-emerging diseases.
Background The serological diagnosis of avian influenza (AI) can be performed using different methods, yet the haemagglutination inhibition (HI) test is considered the ‘gold standard’ for AI antibody subtyping. Although alternative diagnostic assays have been developed, in most cases, their accuracy has been evaluated in comparison with HI test results, whose performance for poultry has not been properly evaluated. Objective The objective of this study was to estimate the diagnostic sensitivity (Se) and specificity (Sp) of the HI test and six other diagnostic assays for the detection of AI antibodies without assuming a gold standard. Methods We applied a Bayesian version of latent class analysis to compare the results of multiple tests from different study settings reported in the literature. Results The results showed that the HI test has nearly perfect accuracy (i.e. 98·8% sensitivity and 99·5% specificity). It performed well in both chickens and turkeys and yet was less accurate in experimentally infected poultry, compared to naturally infected. Blocking ELISA and the indirect immunofluorescence assay also performed very well. Conclusions Given its very high Se and Sp, the HI test may be effectively considered a gold standard. In the framework of LPAI surveillance, where large numbers of samples have to be processed, the blocking ELISA could be a valid alternative to the HI test, in that it is almost as sensitive and specific as the HI test yet quicker and easier to automate.
Low pathogenicity avian influenza (LPAI) viruses of H5 and H7 subtypes have the potential to mutate into highly pathogenic strains (HPAI), which can threaten human health and cause huge economic losses. The current knowledge on the mechanisms of mutation from LPAI to HPAI is insufficient for predicting which H5 or H7 strains will mutate into an HPAI strain, and since the molecular changes necessary for the change in virulence seemingly occur at random, the probability of mutation depends on the number of virus replicates, which is associated with the number of birds that acquire infection. We estimated the transmission dynamics of LPAI viruses in turkeys using serosurveillance data from past epidemics in Italy. We fitted the proportions of birds infected in 36 flocks into a hierarchical model to estimate the basic reproduction number (R 0) and possible variations in R 0 among flocks caused by differences among farms. We also estimated the distributions of the latent and infectious periods, using experimental infection data with outbreak strains. These were then combined with the R0 to simulate LPAI outbreaks and characterise the resulting dynamics. The estimated mean within-flock R0 in the population of infected flocks was 5.5, indicating that an infectious bird would infect an average of more than five susceptible birds. The results also indicate that the presence of seropositive birds does not necessarily mean that the virus has already been cleared and the flock is no longer infective, so that seropositive flocks may still constitute a risk of infection for other flocks. In light of these results, the enforcement of appropriate restrictions, the culling of seropositive flocks, or pre-emptive slaughtering may be useful. The model and parameter estimates presented in this paper provide the first complete picture of LPAI dynamics in turkey flocks and could be used for designing a suitable surveillance program.
Two outbreaks of Leptospira borgpetersenii serovar Hardjo infection in dairy cattle herds were managed through the application of enhanced biosecurity measures, whole-herd antibiotic treatment and vaccination. Micro-agglutination test antibody titres were determined in paired serum samples at 3 weeks (T1: n = 125, 97% seropositivity, median 800, range 100-12 800) and 24 weeks (T2: n = 110, 88% seropositivity, median 200, range 100-6400) after vaccination and studied in relation to cows' age, herd of origin and sampling time. From T1 to T2, vaccine-elicited antibody titres decreased by 84·7% (95% CI 76·2-90·1). Consistent with increasing immunocompetence in calves (aged <12 months) and immunosenescence in adult cows (aged >36 months) associated with ageing, antibody titres correlated positively with calves' age and negatively with adult cows' age. No cow had cultivable, (histo)pathologically detectable and/or PCR-detectable leptospires in urine or kidney samples after treatment and vaccination. Vaccination together with proper biosecurity measures and chemoprophylaxis are an affordable insurance to control bovine leptospirosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.