Left" and "right" coordinates control our spatial behavior and even influence abstract thoughts. For number concepts, horizontal spatial-numerical associations (SNAs) have been widely documented: we associate few with left and many with right. Importantly, increments are universally coded on the right side even in preverbal humans and nonhuman animals, thus questioning the fundamental role of directional cultural habits, such as reading or finger counting. Here, we propose a biological, nonnumerical mechanism for the origin of SNAs on the basis of asymmetric tuning of animal brains for different spatial frequencies (SFs). The resulting selective visual processing predicts both universal SNAs and their context-dependence. We support our proposal by analyzing the stimuli used to document SNAs in newborns for their SF content. As predicted, the SFs contained in visual patterns with few versus many elements preferentially engage right versus left brain hemispheres, respectively, thus predicting left-versus rightward behavioral biases. Our "brain's asymmetric frequency tuning" hypothesis explains the perceptual origin of horizontal SNAs for nonsymbolic visual numerosities and might be extensible to the auditory domain.
To construct a coherent multi-modal percept, vertebrate brains extract low-level features (such as spatial and temporal frequencies) from incoming sensory signals. However, because frequency processing is lateralized with the right hemisphere favouring low frequencies while the left favours higher frequencies, this introduces asymmetries between the hemispheres. Here, we describe how this lateralization shapes the development of several cognitive domains, ranging from visuo-spatial and numerical cognition to language, social cognition, and even aesthetic appreciation, and leads to the emergence of asymmetries in behaviour. We discuss the neuropsychological and educational implications of these emergent asymmetries and suggest future research approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.