The most common aortic valve diseases in adults are stenosis due to calcification and regurgitation. In pediatric patients, aortic pathologies are less common. When a native valve is surgically replaced by a prosthetic one, it is necessary to consider that the latter has a limited durability. In particular, current bioprosthetic valves have to be replaced after approximately 10 years; mechanical prostheses are more durable but require the administration of permanent anticoagulant therapy. With regard to pediatric patients, both mechanical and biological prosthetic valves have to be replaced due to their inability to follow patients’ growth. An alternative surgical substitute can be represented by the acellular porcine aortic valve that exhibits less immunogenic risk and a longer lifespan. In the present study, an efficient protocol for the removal of cells by using detergents, enzyme inhibitors, and hyper- and hypotonic shocks is reported. A new detergent (Tergitol) was applied to replace TX-100 with the aim to reduce toxicity and maximize ECM preservation. The structural integrity and efficient removal of cells and nuclear components were assessed by means of histology, immunofluorescence, and protein quantification; biomechanical properties were also checked by tensile tests. After decellularization, the acellular scaffold was sterilized with a standard protocol and repopulated with bone marrow mesenchymal stem cells to analyze its biocompatibility profile.
Right ventricle outflow tract obstruction (RVOTO) is a congenital pathological condition that contributes to about 15% of congenital heart diseases. In most cases, the replacement of the right ventricle outflow in pediatric age requires subsequent pulmonary valve replacement in adulthood. The aim of this study was to investigate the extracellular matrix scaffold obtained by decellularization of the porcine pulmonary valve using a new detergent (Tergitol) instead of Triton X-100. The decellularized scaffold was evaluated for the integrity of its extracellular matrix (ECM) structure by testing for its biochemical and mechanical properties, and the cytotoxicity/cytocompatibility of decellularized tissue was assessed using bone marrow-derived mesenchymal stem cells. We concluded that Tergitol could remove the nuclear material efficiently while preserving the structural proteins of the matrix, but without an efficient removal of the alpha-gal antigenic epitope. Therefore, Tergitol can be used as an alternative detergent to replace the Triton X-100.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.