We investigated the effects of two types of cyclic tensile strain, continuous and rest inserted, on osteogenic differentiation of human adipose-derived adult stem cells (hASCs). The influence of these mechanical strains was tested on two hASC lines having different mineral deposition potential, with one cell line depositing approximately nine times as much calcium as the other hASC line after 14 days of culture in osteogenic medium on tissue culture plastic. Results showed that both continuous (10% strain, 1 Hz) and rest inserted cyclic tensile strain (10% strain, 1 Hz, 10 s rest after each cycle) regimens increased the amount and rate of calcium deposition for both high and low calcium depositing hASC lines as compared to unstrained controls. The response was similar for both types of tensile strain for a given cell line, however, cyclic tensile strain had a much stronger osteogenic effect on the high calcium depositing hASC line, suggesting that mechanical loading has a greater effect on cell lines that already have an innate ability to produce bone as compared to cell lines that do not. This is the first study to investigate the osteodifferentiation effects of cyclic tensile strain on hASCs and the first to show that both continuous (10%, 1 Hz) and rest inserted (10%, 1 Hz, 10 s rest) cyclic tensile strain accelerate hASC osteodifferentiation and increase calcium accretion.
Treatment of esophageal disease can necessitate resection and reconstruction of the esophagus. Current reconstruction approaches are limited to utilization of an autologous conduit such as stomach, small bowel, or colon. A tissue engineered construct providing an alternative for esophageal replacement in circumferential, full thickness resection would have significant clinical applications. In the current study, we demonstrate that regeneration of esophageal tissue is feasible and reproducible in a large animal model using synthetic polyurethane electro-spun grafts seeded with autologous adipose-derived mesenchymal stem cells (aMSCs) and a disposable bioreactor. The scaffolds were not incorporated into the regrown esophageal tissue and were retrieved endoscopically. Animals underwent adipose tissue biopsy to harvest and expand autologous aMSCs for seeding on electro-spun polyurethane conduits in a bioreactor. Anesthetized pigs underwent full thickness circumferential resection of the mid-lower thoracic esophagus followed by implantation of the cell seeded scaffold. Results from these animals showed gradual structural regrowth of endogenous esophageal tissue, including squamous esophageal mucosa, submucosa, and smooth muscle layers with blood vessel formation. Scaffolds carrying autologous adipose-derived mesenchymal stem cells may provide an alternative to the use of a gastro-intestinal conduit for some patients following resection of the esophagus.
Metastatic disease remains the primary cause of mortality in cancer patients. Yet the number of available in vitro models to study metastasis is limited by challenges in the recapitulation of the metastatic microenvironment in vitro, and by difficulties in maintaining colonized-tissue specificity in the expansion and maintenance of metastatic cells. Here, we show that decellularized scaffolds that retain tissue-specific extracellular-matrix (ECM) components and bound signaling molecules enable, when seeded with colorectal cancer (CRC) cells, the spontaneous formation of three-dimensional cell colonies that histologically, molecularly and phenotypically resemble in vivo metastases. Lung and liver metastases obtained by culturing CRC cells on, respectively, liver and lung decellularized scaffolds retained their tissue-specific tropism when injected in mice. We also found that the engineered metastases contained signet ring cells, which has not previously been observed ex vivo. A culture system with tissue-specific decellularized scaffolds represents a simple and powerful approach for the study of organ-specific cancer metastases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.