New strategies are needed to address the data gap between the bioactivity of chemicals in the environment versus existing hazard information. We address whether a high-throughput screening (HTS) system using a vertebrate organism (embryonic zebrafish) can characterize chemical-elicited behavioral responses at an early, 24 hours post-fertilization (hpf) stage that predict teratogenic consequences at a later developmental stage. The system was used to generate full concentration–response behavioral profiles at 24 hpf across 1060 ToxCast™ chemicals. Detailed, morphological evaluation of all individuals was performed as experimental follow-up at 5 days post-fertilization (dpf). Chemicals eliciting behavioral responses were also mapped against external HTS in vitro results to identify specific molecular targets and neurosignalling pathways. We found that, as an integrative measure of normal development, significant alterations in movement highlighted active chemicals representing several modes of action. These early behavioral responses were predictive for 17 specific developmental abnormalities and mortality measured at 5 dpf, often at lower (i.e., more potent) concentrations than those at which morphological effects were observed. Therefore, this system can provide rapid characterization of chemical-elicited behavioral responses at an early developmental stage that are predictive of observable adverse effects later in life.
BackgroundDrawing integrated conclusions from diverse source data requires synthesis across multiple types of information. The ToxPi (Toxicological Prioritization Index) is an analytical framework that was developed to enable integration of multiple sources of evidence by transforming data into integrated, visual profiles. Methodological improvements have advanced ToxPi and expanded its applicability, necessitating a new, consolidated software platform to provide functionality, while preserving flexibility for future updates.ResultsWe detail the implementation of a new graphical user interface for ToxPi (Toxicological Prioritization Index) that provides interactive visualization, analysis, reporting, and portability. The interface is deployed as a stand-alone, platform-independent Java application, with a modular design to accommodate inclusion of future analytics. The new ToxPi interface introduces several features, from flexible data import formats (including legacy formats that permit backward compatibility) to similarity-based clustering to options for high-resolution graphical output.ConclusionsWe present the new ToxPi interface for dynamic exploration, visualization, and sharing of integrated data models. The ToxPi interface is freely-available as a single compressed download that includes the main Java executable, all libraries, example data files, and a complete user manual from http://toxpi.org.
We investigated the effects of two types of cyclic tensile strain, continuous and rest inserted, on osteogenic differentiation of human adipose-derived adult stem cells (hASCs). The influence of these mechanical strains was tested on two hASC lines having different mineral deposition potential, with one cell line depositing approximately nine times as much calcium as the other hASC line after 14 days of culture in osteogenic medium on tissue culture plastic. Results showed that both continuous (10% strain, 1 Hz) and rest inserted cyclic tensile strain (10% strain, 1 Hz, 10 s rest after each cycle) regimens increased the amount and rate of calcium deposition for both high and low calcium depositing hASC lines as compared to unstrained controls. The response was similar for both types of tensile strain for a given cell line, however, cyclic tensile strain had a much stronger osteogenic effect on the high calcium depositing hASC line, suggesting that mechanical loading has a greater effect on cell lines that already have an innate ability to produce bone as compared to cell lines that do not. This is the first study to investigate the osteodifferentiation effects of cyclic tensile strain on hASCs and the first to show that both continuous (10%, 1 Hz) and rest inserted (10%, 1 Hz, 10 s rest) cyclic tensile strain accelerate hASC osteodifferentiation and increase calcium accretion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.