Background Vitamin D deficiency (VDD) is a common problem in reproductive-aged women and has become a major public health problem worldwide. The effect of VDD in pregnancy has been associated with several adverse pregnancy outcomes. This study aims to assess the serum levels of 25-hydroxyvitamin D (25(OH)D) in the first trimester and its associated factors (socio-demographics, pregnancy profiles, dietary intake, and maternal anthropometry measurements) for the determination of vitamin D deficiency status in early pregnancy. Methods A cross-sectional study of 239 pregnant mothers in West Sumatra, Indonesia was conducted. We measured lifestyle, socio-demographics and pregnancy profile through a structured questionnaire and interview process. A semi quantitative-food frequency questionnaire (SQ-FFQ) was used to analyse the dietary intake of the pregnant women. Serum 25(OH)D concentrations were measured at < 13 weeks gestation using ELISA and logistic regression models were employed to identify the predictors of low vitamin D status. Results The prevalence of first-trimester maternal VDD and sufficiency were 82.8 and 17.2% respectively. The median 25(OH)D was 13.15 ng/mL (3.00–49.29 ng/mL). The significant independent predictors were no working status (OR: 0.029;0.001–0.708) ( p = 0.030); nulliparous parity status (OR: 7.634;1.550–37.608) ( p = 0.012); length of outdoor activity status of less than an hour (OR: 9.659;1.883–49.550) ( p = 0.007); and no consumption of supplements before pregnancy (OR: 4.49;1.081–18.563) ( p = 0.039). Conclusions The prevalence of VDD is common in early pregnancy among Minangkabau women. Recommendations and policies to detect and prevent such insufficiency during pregnancy should be developed by considering the associated factors.
Metabolic diseases have been shown to be associated with low vitamin D status; however, the findings have been inconsistent. Hence, the objective of our study was to investigate the relationship between vitamin D status and metabolic disease-related traits in healthy Southeast Asian women and examine whether this relationship was modified by dietary factors using a nutrigenetic study. The study included 110 Minangkabau women (age: 25–60 years) from Padang, Indonesia. Genetic risk scores (GRS) were constructed based on five vitamin D-related single nucleotide polymorphisms (SNPs) (vitamin D-GRS) and ten metabolic disease-associated SNPs (metabolic-GRS). The metabolic-GRS was significantly associated with lower 25-hydroxyvitamin D (25(OH)D) concentrations (p = 0.009) and higher body mass index (BMI) (p = 0.016). Even though the vitamin D-GRS had no effect on metabolic traits (p > 0.12), an interaction was observed between the vitamin D-GRS and carbohydrate intake (g) on body fat percentage (BFP) (pinteraction = 0.049), where those individuals who consumed a high carbohydrate diet (mean ± SD: 319 g/d ± 46) and carried >2 vitamin D-lowering risk alleles had significantly higher BFP (p = 0.016). In summary, we have replicated the association of metabolic-GRS with higher BMI and lower 25(OH)D concentrations and identified a novel interaction between vitamin D-GRS and carbohydrate intake on body fat composition.
Purpose Adverse effects of maternal vitamin D deficiency have been linked to adverse pregnancy outcomes. We investigated the relationship between maternal vitamin D status and newborn anthropometry measurements using a genetic approach and examined the interaction between genetic variations in involved in vitamin D synthesis and metabolism and maternal vitamin D concentrations on newborn anthropometry. Methods The study was conducted in 183 pregnant Indonesian Minangkabau women. Genetic risk scores (GRSs) were created using six vitamin D–related single nucleotide polymorphisms and their association with 25-hydroxyvitamin D [25(OH)D] levels and newborn anthropometry (183 infants) were investigated. Results There was no significant association between maternal 25(OH)D concentrations and newborn anthropometry measurements (P > 0.05, for all comparisons). After correction for multiple testing using Bonferroni correction, GRS was significantly associated with 25(OH)D in the third trimester (P = 0.004). There was no association between GRS and newborn anthropometric measurements; however, there was an interaction between GRS and 25(OH)D on head circumference (P = 0.030), where mothers of neonates with head circumference < 35 cm had significantly lower 25(OH)D if they carried ≥4 risk alleles compared to those who carried ≤3 risk alleles. Conclusion Our findings demonstrate the impact of vitamin D-related GRS on 25(OH)D and provides evidence for the effect of vitamin D-related GRS on newborn anthropometry through the influence of serum 25(OH)D levels among Indonesian pregnant women. Even though our study is a prospective cohort, before the implementation of vitamin D supplementation programs in Indonesia to prevent adverse pregnancy outcomes, further large studies are required to confirm our findings.
BACKGROUND: There is a high prevalence of vitamin D deficiency in pregnancy worldwide, and variable availability of vitamin D-rich foods may affect the adequacy of vitamin D food intake in different regions. AIM: We analysed the relationship between place of residence and maternal food intake of vitamin D and calcium in West Sumatra, Indonesia. METHODS: This cross-sectional study was conducted in 203 pregnant women. Data collection was carried out in four districts in West Sumatra – two in coastal locations and two in mountainous locations – with subjects divided into groups based on their place of residence. The dietary intakes of pregnant women were assessed through a semi-quantitative food-frequency questionnaire (SQ-FFQ). RESULTS: The means of maternal vitamin D and calcium food intake were 7.92 ± 5.26 µg/day and 784.88 ± 409.77 mg/day, respectively. There were no reports of vitamin D supplement intake during pregnancy. A total of 86.7% and 89.7% of the study subjects had low vitamin D and calcium food intake status, respectively. There was a significant association between maternal vitamin D intake and place of residence (p = 0.02) and significant different mean levels of vitamin D food intake with the place of residence (9.04 vs 6.55 µg/day; p = 0.01). Mothers who had higher education levels had adequate calcium food intake (p = 0.015; OR: 0.295; 0.116–0.751). CONCLUSION: Low maternal vitamin D and calcium food intake were found to be common in West Sumatra, Indonesia and their differed between those residents in mountainous and in coastal areas.
Purpose Given that the relationship between vitamin D status and metabolic diseases such as obesity and type 2 diabetes (T2D) remains unclear, this review will focus on the genetic associations, which are less prone to confounding, between vitamin D-related single nucleotide polymorphisms (SNPs) and metabolic diseases. Methods A literature search of relevant articles was performed on PubMed up to December 2019. Those articles that had examined the association of vitamin D-related SNPs with obesity and/or T2D were included. Two reviewers independently evaluated the eligibility for the inclusion criteria and extracted the data. In total, 73 articles were included in this review. Results There is a lack of research focusing on the association of vitamin D synthesis-related genes with obesity and T2D; however, the limited available research, although inconsistent, is suggestive of a protective effect on T2D risk. While there are several studies that investigated the vitamin D metabolism-related SNPs, the research focusing on vitamin D activation, catabolism and transport genes is limited. Studies on CYP27B1, CYP24A1 and GC genes demonstrated a lack of association with obesity and T2D in Europeans; however, significant associations with T2D were found in South Asians. VDR gene SNPs have been extensively researched; in particular, the focus has been mainly on BsmI (rs1544410), TaqI (rs731236), ApaI (rs7975232) and FokI (rs2228570) SNPs. Even though the association between VDR SNPs and metabolic diseases remain inconsistent, some positive associations showing potential effects on obesity and T2D in specific ethnic groups were identified. Conclusions Overall, this literature review suggests that ethnic-specific genetic associations are involved. Further research utilizing large studies is necessary to better understand these ethnic-specific genetic associations between vitamin D deficiency and metabolic diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.