Several cytochrome P450 (CYP) enzymes are expressed in the human lung, where they participate in metabolic inactivation and activation of numerous exogenous and endogenous compounds. In this study, the expression pattern of all known xenobiotic-metabolizing CYP genes was characterized in the human alveolar type II cell-derived A549 adenocarcinoma cell line using qualitative reverse transcriptase/polymerase chain reaction (RT-PCR). In addition, the mechanisms of induction by chemicals of members in the CYP1 and CYP3A subfamilies were assessed by quantitative RT-PCR. The expression of messenger RNAs (mRNAs) of CYPs 1A1, 1B1, 2B6, 2C, 2E1, 3A5, and 3A7 was detected in the A549 cells. The amounts of mRNAs of CYPs 1A2, 2A6, 2A7, 2A13, 2F1, 3A4, and 4B1 were below the limit of detection. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) induced CYP1A1 and CYP1B1 mRNAs 56-fold and 2.5-fold, respectively. CYP3A5 was induced 8-fold by dexamethasone and 11-fold by phenobarbital. CYP3A4 was not induced by any of the typical CYP3A4 inducers used. The tyrosine kinase inhibitor genistein and the protein kinase C inhibitor staurosporine blocked TCDD-elicited induction of CYP1A1, but they did not affect CYP1B1 induction. Protein phosphatase inhibitors okadaic acid and calyculin A enhanced TCDD-induction of CYP1B1 slightly, but had negligible effects on CYP1A1 induction. These results suggest that CYP1A1 and CYP1B1 are differentially regulated in human pulmonary epithelial cells and give the first indication of the induction of CYP3A5 by glucocorticoids in human lung cells. These results establish that having retained several characteristics of human lung epithelial cell CYP expression, the A549 lung cell line is a valuable model for mechanistic studies on induction of the pulmonary CYP system.
CYP3A5 is the major CYP3A form in the human lung, and it is inducible by dexamethasone in the human A549 lung adenocarcinoma cell line. In the present study, we characterized the nature and mechanism of this induction process. The induction of CYP3A5 mRNA was assessed by quantitative reverse transcriptase-polymerase chain reaction in A549 cells. About 4-fold induction was detected by nanomolar concentrations of dexamethasone and also by budenoside and beclomethasone dipropionate, glucocorticoids used for the inhalation treatment of bronchial asthma, whereas the CYP3A4 inducers mifepristone (RU486), rifampicin, clotrimazole, and nifedipine were without effect. The glucocorticoid induction was blocked by the glucocorticoid receptor (GR) antagonist RU486. In transient transfection assays to A549 cells, CYP3A5 5Ј regulatory region was activated by the dexamethasone treatment. In contrast, dexamethasone was unable to induce CYP3A5 transcription in GR-deficient COS-1 cells, but the induction could be achieved after GR cotransfection. The CYP3A5 expression was measured in alveolar macrophages from patients with respiratory diseases. The CYP3A5 expression level was decreased by smoking, but glucocorticoid therapy had no statistically significant effect. In conclusion, CYP3A5 is induced in the A549 cells by glucocorticoids through a GR-mediated pathway, whereas smoking may be able to depress CYP3A5 expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.