This study investigates the mercury (Hg) contaminations in soil and foodstuffs along the artisanal gold mining areas, Gilgit-Baltistan Province, Pakistan. For this purpose, soils were analyzed for Hg concentrations and evaluated for the enrichment/contamination using enrichment factor or contamination factors (CF). The CF values ranged from 18.9 to 153 showed multifold higher levels of Hg contamination as compared to background or reference site. Foodstuffs including vegetables, seeds or grains and fish muscles showed Hg accumulation. Results revealed that Hg concentrations in foodstuffs were higher than the critical human health value set by European Union. The Hg in foodstuffs was consumed and, therefore, evaluated for the risk assessment indices using the daily intake (DI) and health risk index (HRI) for the exposed human population both children and adults. Results of this study revealed that cumulative HRI values through foodstuffs consumption were <1 (within safe limit), but if the current practices continued, then the Hg contamination could pose potential threat to exposed population in near future.
One of the big environmental problems in today’s world is dye-contaminated toxic waste. Peroxidase is known as highly efficient for the degradation of various pollutants, including dyes. Environmental contamination caused by the discharge of dyes into water bodies is an onerous challenge that poses both human and ecological hazards. In the current studies, biocatalysts used for enzyme decolorization (1847 Colafx Blue P3R and 621 Colafx Blue) are regarded as an eco-friendly method utilizing commonly available low-cost material lemon peels (Citruslimon peroxidase). Peroxidase was extracted in a phosphate buffer of pH 7.0 and partially purified by 20–80% ammonium sulfate precipitation technique from Citruslimon peels. The soluble enzyme was characterized in terms of kinetic and thermodynamic parameters. The values of Km and Vmax (23.16 and 204.08 μmol/ml/min) were determined, respectively. The enzyme showed maximum activity at pH 5.0 and a temperature of 55 °C. Citruslimon efficiently degraded 1847 Colafx Blue P3R and 621 Colafx Blue R dyes with maximum degradation of 83 and 99%, respectively, with an initial dye concentration of 200 ppm at pH 4 and 35 °C temperature within 5–10 min of incubation time. The effect of the redox mediator on the degradation process was examined. Results showed that the peroxidase HOBT system efficiently enhanced the degradation of dyes from water. Hence, Citruslimon peroxidase is an efficient biocatalyst for the treatment of effluents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.