We present an oblique plane microscope (OPM) that uses a bespoke glass-tipped tertiary objective to improve the resolution, field of view, and usability over previous variants. Owing to its high numerical aperture optics, this microscope achieves lateral and axial resolutions that are comparable to the square illumination mode of lattice light-sheet microscopy, but in a user friendly and versatile format. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and Natural Killer-mediated cytotoxicity. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through confined spaces within a microfluidic device, subcellular photoactivation of Rac1, diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz, and large field of view imaging of neurons, developing embryos, and centimeter-scale tissue sections.
We present a single-objective light-sheet microscope, also known as an oblique-plane microscope, that uses a bespoke glass-tipped tertiary objective and improves the resolution, field of view, usability, and stability over previous variants. Owing to its high numerical aperture optics, this microscope achieves the highest lateral resolution in light-sheet fluorescence microscopy, and its axial resolution is similar to that of Lattice Light-Sheet Microscopy. Given this performance, we demonstrate high-resolution imaging of clathrin-mediated endocytosis, vimentin, the endoplasmic reticulum, membrane dynamics, and natural killer cell-mediated cell death. Furthermore, we image biological phenomena that would be otherwise challenging or impossible to perform in a traditional light-sheet microscope geometry, including cell migration through a confined space within a microfluidic device, photoactivation of PI3K, and diffusion of cytoplasmic rheological tracers at a volumetric rate of 14 Hz.
The adequate handling of central venous catheters is a key element in the management of patients with cancer. Catheter-associated deep vein thrombosis is frequently observed in patients with malignant diseases; however, despite being a common complication among these patients, objective information concerning its epidemiology, clinical course, prophylaxis and treatment strategies is very limited. The reported incidence of catheter-related thrombosis (CRT) is highly variable, depending on symptomatic events, or if patients are screened for asymptomatic thrombosis. Several factors have been identified as potential predisposing factors for CRT, both technical and pathological aspects. The anticoagulant of choice is still unclear; while low-molecular-weight heparin is most commonly used, recent studies assessing the role of direct oral anticoagulants in the treatment of CRT show promise as an alternative, but the evidence remains insufficient and the decision must be made on a case-by-case basis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.