Abstract. Deep learning classifiers are known to be inherently vulnerable to manipulation by intentionally perturbed inputs, named adversarial examples. In this work, we establish that reinforcement learning techniques based on Deep Q-Networks (DQNs) are also vulnerable to adversarial input perturbations, and verify the transferability of adversarial examples across different DQN models. Furthermore, we present a novel class of attacks based on this vulnerability that enable policy manipulation and induction in the learning process of DQNs. We propose an attack mechanism that exploits the transferability of adversarial examples to implement policy induction attacks on DQNs, and demonstrate its efficacy and impact through experimental study of a game-learning scenario.
We propose a novel integrated fog cloud IoT (IFCIoT) architectural paradigm that promises increased performance, energy efficiency, reduced latency, quicker response time, scalability, and better localized accuracy for future IoT applications. The fog nodes (e.g., edge servers, smart routers, base stations) receive computation offloading requests and sensed data from various IoT devices. To enhance performance, energy efficiency, and real-time responsiveness of applications, we propose a reconfigurable and layered fog node (edge server) architecture that analyzes the applications' characteristics and reconfigure the architectural resources to better meet the peak workload demands. The layers of the proposed fog node architecture include application layer, analytics layer, virtualization layer, reconfiguration layer, and hardware layer. The layered architecture facilitates abstraction and implementation for fog computing paradigm that is distributed in nature and where multiple vendors (e.g., applications, services, data and content providers) are involved. We also elaborate the potential applications of IFCIoT architecture, such as smart cities, intelligent transportation systems, localized weather maps and environmental monitoring, and real-time agricultural data analytics and control.
Intelligent Transportation Systems (ITS) aim at integrating sensing, control, analysis, and communication technologies into travel infrastructure and transportation to improve mobility, comfort, safety, and efficiency. Car manufacturers are continuously creating smarter vehicles, and advancements in roadways and infrastructure are changing the feel of travel. Traveling is becoming more efficient and reliable with a range of novel technologies, and research and development in ITS. Safer vehicles are introduced every year with greater considerations for passenger and pedestrian safety, nevertheless, the new technology and increasing connectivity in ITS present unique attack vectors for malicious actors. Smart cities with connected public transportation systems introduce new privacy concerns with the data collected about passengers and their travel habits. In this paper, we provide a comprehensive classification of security and privacy vulnerabilities in ITS. Furthermore, we discuss challenges in addressing security and privacy issues in ITS and contemplate potential mitigation techniques. Finally, we highlight future research directions to make ITS more safe, secure, and privacy-preserving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.