Releasing sterile or incompatible male insects is a proven method of population management in agricultural systems with the potential to revolutionize mosquito control. Through a collaborative venture with the “Debug” Verily Life Sciences team, we assessed the incompatible insect technique (IIT) with the mosquito vector Aedes aegypti in northern Australia in a replicated treatment control field trial. Backcrossing a US strain of Ae. aegypti carrying Wolbachia wAlbB from Aedes albopictus with a local strain, we generated a wAlbB2-F4 strain incompatible with both the wild-type (no Wolbachia) and wMel-Wolbachia Ae. aegypti now extant in North Queensland. The wAlbB2-F4 strain was manually mass reared with males separated from females using Verily sex-sorting technologies to obtain no detectable female contamination in the field. With community consent, we delivered a total of three million IIT males into three isolated landscapes of over 200 houses each, releasing ∼50 males per house three times a week over 20 wk. Detecting initial overflooding ratios of between 5:1 and 10:1, strong population declines well beyond 80% were detected across all treatment landscapes when compared to controls. Monitoring through the following season to observe the ongoing effect saw one treatment landscape devoid of adult Ae. aegypti early in the season. A second landscape showed reduced adults, and the third recovered fully. These encouraging results in suppressing both wild-type and wMel-Ae. aegypti confirms the utility of bidirectional incompatibility in the field setting, show the IIT to be robust, and indicate that the removal of this arbovirus vector from human-occupied landscapes may be achievable.
Climate change is predicted to increase temperature extremes and thus thermal stress on organisms. Animals living in hot deserts are already exposed to high ambient temperatures (T a) making them especially vulnerable to further warming. However, little is known about the effect of extreme heat events on small desert mammals, especially tree-roosting microbats that are not strongly protected from environmental temperature fluctuations. During a heat wave with record T as at Sturt National Park, we quantified the thermal physiology and behaviour of a single free-ranging little broad-nosed (Scotorepens greyii, henceforth Scotorepens) and two inland freetail bats (Mormopterus species 3, henceforth Mormopterus) using temperature telemetry over 3 days. On 11 and 13 January, maximum T a was ∼45.0 °C, and all monitored bats were thermoconforming. On 12 January 2013, when T a exceeded 48.0 °C, Scotorepens abandoned its poorly insulated roost during the daytime, whereas both Mormopterus remained in their better insulated roosts and were mostly thermoconforming. Maximum skin temperatures (T skin) ranged from 44.0 to 44.3 °C in Scotorepens and from 40.0 to 45.8 °C in Mormopterus, and these are the highest T skin values reported for any free-ranging bat. Our study provides the first evidence of extensive heat tolerance in free-ranging desert microbats. It shows that these bats can tolerate the most extreme T skin range known for mammals (3.3 to 45.8 °C) and delay regulation of T skin by thermoconforming over a wide temperature range and thus decrease the risks of dehydration and consequently death.
Bats are among the most successful groups of Australian arid-zone mammals and, therefore, must cope with pronounced seasonal fluctuations in ambient temperature (T a), food availability and unpredictable weather patterns. As knowledge about the energy conserving strategies in desert bats is scant, we used temperature-telemetry to quantify the thermal physiology of tree-roosting inland freetail bats (Mormopterus species 3, 8.5 g, n = 8) at Sturt National Park over two summers (2010-2012), when T a was high and insects were relatively abundant. Torpor use and activity were affected by T a. Bats remained normothermic on the warmest days; they employed one "morning" torpor bout on most days and typically exhibited two torpor bouts on the coolest days. Overall, animals employed torpor on 67.9 % of bat-days and torpor bout duration ranged from 0.5 to 39.3 h. At any given T a, torpor bouts were longer in Mormopterus than in bats from temperate and subtropical habitats. Furthermore, unlike bats from other climatic regions that used only partial passive rewarming, Mormopterus aroused from torpor using either almost entirely passive (68.9 % of all arousals) or active rewarming (31.1 %). We provide the first quantitative data on torpor in a free-ranging arid-zone molossid during summer. They demonstrate that this desert bat uses torpor extensively in summer and often rewarms passively from torpor to maximise energy and water conservation.
As the incidence of arboviral diseases such as dengue, Zika, chikungunya, and yellow fever increases globally, controlling their primary vector, Aedes aegypti (L.) (Diptera: Culicidae), is of greater importance than ever before. Mosquito control programs rely heavily on effective adult surveillance to ensure methodological efficacy. The Biogents Sentinel (BGS) trap is the gold standard for surveilling adult Aedes mosquitoes and is commonly deployed worldwide, including during modern ‘rear and release’ programs. Despite its extensive use, few studies have directly assessed environmental characteristics that affect BGS trap catches, let alone how these influences change during ‘rear and release’ programs. We assessed male and female Ae. aegypti spatial stability, as well as premises condition and trap location influences on BGS trap catches, as part of Debug Innisfail ‘rear and release’ program in northern Australia. We found similar trends in spatial stability of male and female mosquitoes at both weekly and monthly resolutions. From surveillance in locations where no males were released, reduced catches were found at premises that contained somewhat damaged houses and unscreened properties. In addition, when traps were located in areas that were unsheltered, more than 10 m from commonly used sitting areas or more visually complex catches were also negatively affected. In locations where males were released, we found that traps in treatment sites, relative to control sites, displayed increased catches in heavily shaded premises and were inconsistently influenced by differences in house sets and building materials. Such findings have valuable implications for a range of Ae. aegypti surveillance programs.
Bats are most diverse in the tropics, but there are no quantitative data on torpor use for energy conservation by any tropical bat in the wild. We examined the thermal biology, activity patterns and torpor use of two tree-roosting long-eared bats (Nyctophilus geoffroyi, 7.8 g) in tropical northern Australia in winter using temperature telemetry. Bats commenced activity about 20 min after sunset, ended activity about 2.5 h before sunrise and entered torpor everyday in the early morning even when minimum ambient temperatures (T (a)) were as high as 23°C. On average, bats remained torpid for almost 5 h, mean minimum skin temperature (T (skin)) measured was 22.8 ± 0.1°C and daily T (skin) minima were correlated with T(a). Our study shows that even in the tropics, torpor is frequently employed by bats, suggesting that worldwide most bat species are heterothermic and use torpor for energy conservation. We propose that the ability of employing torpor and the resulting highly plastic energy requirements may partially explain why these small insectivorous bats can inhabit almost the entire Australian continent despite vastly different climatic and likely trophic conditions. Reduced energy requirements also may permit survival in degraded or modified habitats, reduce the need for foraging and reduce exposure to predators. Thus, the ability to employ torpor may be one important reason for why most Australian bats and other heterothermic mammals have not gone extinct whereas many obligatory homeothermic mammals that cannot employ torpor and have high energy and foraging requirements have suffered high rates of extinctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.