Over the present material synthesis routes, the sonochemical route is highly efficient and comfortable way to produce nanostructured materials. In this way, the copper sulfide (CuS-covellite) and sulfur doped reduced graphene oxide (S-rGO) nanocomposite was prepared by sonochemical method. Interestingly, the structure of the as-prepared S-rGO/CuS was changed from the covellite to digenite phase. Herein, the S-rGO was act as a mild oxidizer and liable for the structural transformations. These structural changes are sequentially studied by various physicochemical characterizations such as Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy (TEM). After scrupulous structural evaluations, the transformation of CuS phase was identified and documented. This oxidized CuS has an excellent electrocatalytic activity when compare to the bulk CuS. This S-rGO/CuS was further used for the determination of glucose and acquired good electrocatalytic performances. This S-rGO/CuS was exhibited a wide linear concentration range, 0.0001–3.88 mM and 3.88–20.17 mM, and a low-level detection limit of 32 nM. Moreover, we have validated the practicability of our developed glucose sensor in real biological samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.