As supercomputers grow, understanding their behavior and performance has become increasingly challenging. New hurdles in scalability, programmability, power consumption, reliability, cost, and cooling are emerging, along with new technologies such as 3D integration, GP-GPUs, silicon-photonics, and other "game changers". Currently, they HPC community lacks a unified toolset to evaluate these technologies and design for these challenges.To address this problem, a number of institutions have joined together to create the Structural Simulation Toolkit (SST), an open, modular, parallel, multi-criteria, multi-scale simulation framework. The SST includes a number of processor, memory, and network models. The SST has been used in a variety of network, memory, and application studies and aims to become the standard simulation framework for designing and procuring HPC systems.
To achieve exascale computing, fundamental hardware architectures must change. The most significant consequence of this assertion is the impact on the scientific applications that run on current high performance computing (HPC) systems, many of which codify years of scientific domain knowledge and refinements for contemporary computer systems. In order to adapt to exascale architectures, developers must be able to reason about new hardware and determine what programming models and algorithms will provide the best blend of performance and energy efficiency into the future. While many details of the exascale architectures are undefined, an abstract machine model is designed to allow application developers to focus on the aspects of the machine that are important or relevant to performance and code structure. These models are intended as communication aids between application developers and hardware architects during the co-design process. We use the term proxy architecture to describe a parameterized version of an abstract machine model, with the parameters added to elucidate potential speeds and capacities of key hardware components. These more detailed architectural models are formulated to enable discussion between the developers of analytic models and simulators and computer hardware architects. They allow for application performance analysis and hardware optimization opportunities. In this report our goal is to provide the application development community with a set of models that can help software developers prepare for exascale. In addition, use of proxy architectures, through the use of proxy architectures, we can enable a more concrete exploration of how well application codes map onto the future architectures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.