We will start with a discussion of location based wireless services and then move on to discuss extensions to generalized location based wireless communications.
Location Based Wireless ServiceA Location Based Wireless Service (LBWS) is any wireless data service which allows a client using a wireless data communication device to locate a business, service, or "buddy" in the proximity of the client terminal or some other specified location. LBWS allows, for example, location-relevant traffic data to be downloaded to a client handset. It allows a client to track the location of individuals on a buddy list. A client handset map might list all available service stations, emergency services, restaurants, and hotels.
The authors present two methods for examining video quality using the Structural Similarity (SSIM) index: Iterative Distortion Estimate (IDE) and Cumulative Distortion using SSIM (CDSSIM). In the first method, three types of slices are iteratively reconstructed frame-by-frame for three different combinations of packet loss and the resulting distortions are combined using their probabilities to give the total expected distortion. In the second method, a cumulative measure of the overall distortion is computed by summing the inter-frame propagation impact to all frames affected by a slice loss. Furthermore, the authors develop a No-Reference (NR) sparse regression framework for predicting the CDSSIM metric to circumvent the real-time computational complexity in streaming video applications. The two methods are evaluated in resource allocation and packet prioritization schemes and experimental results show improved performance and better end-user quality. The accuracy of the predicted CDSSIM values is studied using standard performance measures and a Quartile-Based Prioritization (QBP) scheme.
A novel optical flow prediction model using an adaptable deep neural network architecture for blind and non-blind error concealment of videos degraded by transmission loss is presented. The two-stream network model is trained by separating the horizontal and vertical motion fields which are passed through two similar parallel pipelines that include traditional convolutional (Conv) and convolutional long short-term memory (ConvLSTM) layers. The ConvLSTM layers extract temporally correlated motion information while the Conv layers correlate motion spatially. The optical flows used as input to the two-pipeline prediction network are obtained through a flow generation network that can be easily interchanged, increasing the adaptability of the overall end-to-end architecture. The performance of the proposed model is evaluated using real-world packet loss scenarios. Standard video quality metrics are used to compare frames reconstructed using predicted optical flows with those reconstructed using “ground-truth” flows obtained directly from the generator.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.