This work presents a novel method to introduce a sustainable biaxial tensile strain larger than 1% in a thin Ge membrane using a stressor layer integrated on a Si substrate. Raman spectroscopy confirms 1.13% strain and photoluminescence shows a direct band gap reduction of 100meV with enhanced light emission efficiency. Simulation results predict that a combination of 1.1% strain and heavy n(+) doping reduces the required injected carrier density for population inversion by over a factor of 60. We also present the first highly strained Ge photodetector, showing an excellent responsivity well beyond 1.6um.
Metal contacts to n-type Ge have poor performance due to the Fermi level pinning near the Ge valence band at metal/Ge interfaces. The electron barrier height can be reduced by inserting ultrathin dielectrics at the metal-semiconductor interface. However, this technique introduces tunneling resistance from the large conduction band offset (CBO) between the insulator and Ge. In this work, the CBO between TiO2 and Ge is estimated to range from −0.06 to −0.26 eV so tunneling resistance can be reduced. By inserting 7.1 nm TiO2 between Al and n-Ge, current densities increased by about 900× at 0.1 V and 1200× at −0.1 V compared to contacts without TiO2.
We demonstrate room-temperature electroluminescence (EL) from light-emitting diodes (LED) on highly strained germanium (Ge) membranes. An external stressor technique was employed to introduce a 0.76% bi-axial tensile strain in the active region of a vertical PN junction. Electrical measurements show an on-off ratio increase of one order of magnitude in membrane LEDs compared to bulk. The EL spectrum from the 0.76% strained Ge LED shows a 100nm redshift of the center wavelength because of the strain-induced direct band gap reduction. Finally, using tight-binding and FDTD simulations, we discuss the implications for highly efficient Ge lasers.
Recent experiments have demonstrated a reduction of Fermi-level pinning in contacts to n-type Ge by the insertion of a thin tunnel barrier at the interface. The presence of fixed charge in these interface layers can contribute to Schottky-barrier reduction. This work theoretically studies the effect of tunnelbarrier fixed charge on the specific contact resistivity. By simulating various tunnel-barrier materials and fixed-charge densities, we estimate the magnitude of fixed charge required for this mechanism to play an important role in Fermi-level unpinning. Index Terms-Fermi-level pinning, Schottky barrier, specific contact resistivity, tunneling barrier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.