To counteract insect decline, it is essential to understand the underlying causes, especially for key pollinators such as nocturnal moths whose ability to orientate can easily be influenced by ambient light conditions. These comprise natural light sources as well as artificial light, but their specific relevance for moth orientation is still unknown. We investigated the influence of moonlight on the reproductive behavior of privet hawkmoths (Sphinx ligustri) at a relatively dark site where the Milky Way was visible while the horizon was illuminated by distant light sources and skyglow. We show that male moths use the moon for orientation and reach females significantly faster with increasing moon elevation. Furthermore, the choice of flight direction depended on the cardinal position of the moon but not on the illumination of the horizon caused by artificial light, indicating that the moon plays a key role in the orientation of male moths.
One of the most dramatic changes occurring on our planet in recent decades is the ever-increasing extensive use of artificial light at night, which drastically altered the environment nocturnal animals are adapted to. One nocturnal species group experiencing marked declines are moths, which are not only of great importance for species conservation, but also for their key role in food webs and in ecosystem services such as nocturnal plant pollination. Light pollution has been identified as a driver in the dramatic insect decline of the past years, yet little is known about its impact on natural insect orientation behaviour. Using harmonic radar tracking, we show that the orientation of several species of moths is significantly affected by streetlights, although only 4 % of individuals showed flight-to-light behaviour. We reveal a species-specific barrier effect of streetlights on lappet moths whenever the moon was not available as a natural celestial cue. Furthermore, streetlights increased the tortuosity of flight trajectories for both hawk moths and lappet moths. Our results provide the first spatially resolved experimental evidence for the fragmentation of landscapes by streetlights and demonstrate that light pollution affects movement patterns of moths beyond previously assumed extend, potentially affecting their reproductive success and hampering a vital ecosystem service.
Urbanization drives phenotypic variation in many animal species. This includes behavioral and physiological traits such as activity patterns, aggression, and hormone levels. A current challenge of urban evolutionary ecology is to understand the environmental drivers of phenotypic variation in cities. Moreover, do individuals develop tolerance to urban environmental factors, which underlie adaptative responses and contribute to the evolution of urban populations? Most available evidence comes from correlative studies and rare experiments where a single urban-related environmental factor has been manipulated in the field. Here we present the results of an experiment in which we tested for differences in the glucocorticoid (CORT) response of urban and rural blue tits nestlings (Cyanistes caeruleus) to artificial light at night (ALAN). ALAN has been suggested to alter CORT response in several animal species, but to date no study has investigated whether this effect of ALAN differs between urban and rural populations. Immediately after hatching, urban and forest broods were either exposed to 2 lux of ALAN (using an LED source mounted inside the nestbox) or received no treatment (dark control). The experiment lasted until the chicks fledged. When the chicks were 13 days old plasma samples were collected to measure baseline CORT concentrations, and feather samples to provide an integrative measure of CORT during growth. Forest birds had higher plasma CORT (pCORT) concentrations than their urban counterparts, irrespective of whether they were exposed to ALAN or not. Conversely, we found population-specific responses of feather CORT to ALAN. Specifically, urban birds that received ALAN had increased feather CORT compared with the urban dark controls, while the opposite was true for the forest birds. pCORT concentrations were negatively associated to fledging success, irrespective of population and treatment, while feather CORT was positively associated to fledging success in broods exposed to ALAN, but negatively in the dark control ones. Our results demonstrate that ALAN can play a role in determination of the glucocorticoid phenotype of wild animals, and may thus contribute to phenotypic differences between urban and rural animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.