Media sosial, Twitter, saat ini telah banyak memberikan dampak besar dalam membangun opini, pandangan, sentimen, dan preferensi politik publik (menjelang Pemilihan Umum) berlangsung. Penelitian ini dilakukan untuk mengetahui percakapan di Twitter pada debat pertama calon presiden Republik Indonesia melalui hashtag dari kedua pasang calon. Selain itu, juga untuk mengetahui tentang kecenderungan masyarakat di Twitter terkait dengan debat yang sedang berlangsung tersebut cenderung positif, negatif, atau netral. Data percakapan di Twitter didapatkan melalui Twitter API yang diambil dengan bahasa Pemrograman R. Proses analisis sentimen ini menggunakan metode Fined-grained Sentiment Analysis yaitu, Jika satu tweet berisi lebih banyak kalimat positif daripada negatif, maka hasil keseluruhan akan positif dan bernilai (+1). Jika jumlah kalimat negatif lebih besar dari kalimat positif, maka hasil keseluruhan negatif dan bernilai (-1). Jika ada jumlah yang sama dari kalimat positif dan negatif dalam paragraf, maka hasilnya adalah netral dan bernilai (0). Hasil dari penelitian ini menunjukkan bahwa tweet sentimen dari kedua hashtag cenderung positif, lebih banyak daripada sentimen negatif dan netral.
Nowadays, social media is growing rapidly and globally until it finally became an important part of society. During campaign period for the regional head election in Indonesia, the candidates and their supporting parties actively use social media as a campaign tool. Social media like Twitter has been known as a political microblogging media that can provide data about current political event based on users’ tweets. By using Twitter as a data source, this study analyzes public participation during campaign period for 2018 Central Java regional head election. The purpose is to observe how much reaction is given to each candidate who advanced in the election. By using the crawling program, all tweets containing certain candidate names will be downloaded. After going through a series of preprocessing stages, data can be classified using Naive Bayes. Predictor features in classification datasets are the number of replies, retweets, and likes. While the target variable is reaction that is divided into three levels, including high, medium, and low. These levels are determined based on users’ reaction in a tweet. By using these rules, Naive Bayes managed to classify data correctly as much as 76.74% for Ganjar Pranowo and 68.81% for Sudirman Said.
Abstract. Mobile users are getting smarter in using their phones. Many tasks are usually completed or monitored via a computer screen, nowadays can be taken anywhere with Android phones or tablets. Likewise with features in the phone is increasingly sophisticated. Currently bluetooth version 4 is almost mandatory in all phones. Even for entry level phones are now equipped with bluetooth version 4. This paper discusses the use of Bluetooth Low Energy-which is part of bluetooth version 4, in providing information about the status of plant growth chamber conditions. By using this concept, all phones or tablets that have bluetooth version 4 and there are applications in it will be able to receive the latest chamber status. The results show that this way of broadcasting is very effective. The data required to be monitored by a laboratory technician can be continuously broadcasted so that anyone on duty will get instant information at his grasp.
Mesin pendeteksi uang kertas menjadi salah satu objek yang diperhatikan untuk diteliti dan dikembangkan. Mesin pendeteksi uang kertas Indonesia yang ditemukan seperti di stasiun kereta api di suatu kota, terdapat kegagalan dalam mengenali nilai uang kertas tertentu. Tujuan dari penelitian ini adalah membangun model dari pengenalan nilai uang kertas menggunakan K-Nearest Neighbor (KNN) yang merupakan metode yang paling sederhana dan paling penting dalam pengenalan pola, hal ini ditunjukkan pada akurasi yang diperoleh lebih tinggi dibandingkan metode lainnya seperti Artificial Neural Networks (ANN) dan Feedforward Neural Network (FNN). Model yang diusulkan menggunakan ekstraksi fitur, terdapat beberapa fitur yang digunakan untuk pengenalan uang kertas seperti yang pernah dilakukan menggunakan ekstraksi fitur tekstur. Penelitian ini menggunakan ekstraksi fitur warna. Warna memberikan informasi yang berarti dan nilai-nilai yang penting dalam proses mendeskripsikan suatu objek. Warna yang digunakan adalah Red, Green, Blue (RGB). Hasil disajikan pada dataset 40 gambar uang kertas yang terdiri dari pecahan 2000 rupiah keluaran lama, 2000 rupiah keluaran baru, 5000 rupiah keluaran lama, dan 5000 rupiah keluaran baru. Pendekatan yang diusulkan terlihat kinerja yang cukup baik dengan menggunakan metode KNN. Dari 16 data uji menunjukkan 15 objek uang kertas berhasil dideteksi dengan benar. Akurasi yang dihasilkan sebesar 93,7% dengan nilai K=5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.