Ultrasmall blue InGaN micro-light-emitting diodes (µLEDs) with areas from 10−4 to 0.01 mm2 were fabricated to study their optical and electrical properties. The peak external quantum efficiencies (EQEs) of the smallest and largest µLEDs were 40.2 and 48.6%, respectively. The difference in EQE was from nonradiative recombination originating from etching damage. This decrease is less severe than that in red AlInGaP LEDs. The efficiency droop at 900 A/cm2 of the smallest µLED was 45.7%, compared with 56.0% for the largest, and was lower because of improved current spreading. These results show that ultrasmall µLEDs may be fabricated without a significant loss in optical or electrical performance.
Micro-light-emitting diodes (µLEDs) with tunnel junction (TJ) contacts were grown entirely by metalorganic chemical vapor deposition. A LED structure was grown, treated with UV ozone and hydrofluoric acid, and reloaded into the reactor for TJ regrowth. The silicon doping level of the n ++ -GaN TJ was varied to examine its effect on voltage. µLEDs from 2.5 ' 10 %5 to 0.01 mm 2 in area were processed, and the voltage penalty of the TJ for the smallest µLED at 20 A/cm 2 was 0.60 V relative to that for a standard LED with indium tin oxide. The peak external quantum efficiency of the TJ LED was 34%.
We demonstrate efficient semipolar (11-22) 550 nm yellow/green InGaN light-emitting diodes (LEDs) with InGaN barriers on low defect density (11-22) GaN/patterned sapphire templates. The InGaN barriers were clearly identified, and no InGaN clusters were observed by atom probe tomography measurements. The semipolar (11-22) 550 nm InGaN LEDs (0.1 mm size) show an output power of 2.4 mW at 100 mA and a peak external quantum efficiency of 1.3% with a low efficiency drop. In addition, the LEDs exhibit a small blue-shift of only 11 nm as injection current increases from 5 to 100 mA. These results suggest the potential to produce high efficiency semipolar InGaN LEDs with long emission wavelength on large-area sapphire substrates with economical feasibility.
We demonstrate very high luminous efficacy green light-emitting diodes employing Al0.30Ga0.70N cap layer grown on patterned sapphire substrates by metal organic chemical vapor deposition. The peak external quantum efficiency and luminous efficacies were 44.3% and 239 lm/w, respectively. At 20 mA (20 A/cm2) the light output power was 14.3 mW, the forward voltage was 3.5 V, the emission wavelength was 526.6 nm, and the external quantum efficiency was 30.2%. These results are among the highest reported luminous efficacy values for InGaN based green light-emitting diodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.