Optoelectronic effects of sidewall passivation on micro-sized light-emitting diodes (µLEDs) using atomic-layer deposition (ALD) were investigated. Moreover, significant enhancements of the optical and electrical effects by using ALD were compared with conventional sidewall passivation method, namely plasma-enhanced chemical vapor deposition (PECVD). ALD yielded uniform light emission and the lowest amount of leakage current for all µLED sizes. The importance of sidewall passivation was also demonstrated by comparing leakage current and external quantum efficiency (EQE). The peak EQEs of 20 × 20 µm µLEDs with ALD sidewall passivation and without sidewall passivation were 33% and 24%, respectively. The results from ALD sidewall passivation revealed that the size-dependent influences on peak EQE can be minimized by proper sidewall treatment.
Micro-light-emitting-diodes (μLEDs) with size-independent peak external quantum efficiency behavior was demonstrated from 10 × 10 μm2 to 100 × 100 μm2 by employing a combination of chemical treatment and atomic-layer deposition (ALD) sidewall passivation. The chemical treatment and sidewall passivation improved the ideality factors of μLEDs from 3.4 to 2.5. The results from the combination of chemical treatment and ALD sidewall passivation suggest the issue of size dependent efficiency can be resolved with proper sidewall treatments after dry etching.
There is growing interest in microLED devices with lateral dimensions between 1 and 10 μm. However, reductions in external quantum efficiency (EQE) due to increased nonradiative recombination at the surface become an issue at these sizes. Previous attempts to study size-dependent EQE trends have been limited to dimensions above 5 μm, partly due to fabrication challenges. Here, we present size-dependent EQE data for InGaN microLEDs down to 1 μm in diameter fabricated using a process that only utilizes standard semiconductor processing techniques (i.e., lithography and etching). Furthermore, differences in EQE trends for blue and green InGaN microLEDs are compared. Green wavelength devices prove to be less susceptible to reductions in efficiency with the decreasing size; consequently, green devices attain higher EQEs than blue devices below 10 μm despite lower internal quantum efficiencies in the bulk material. This is explained by smaller surface recombination velocities with the increasing indium content due to enhanced carrier localization.
The electrical and optical improvements of AlGaInP micro-light-emitting diodes (µLEDs) using atomic-layer deposition (ALD) sidewall passivation were demonstrated. Due to the high surface recombination velocity and minority carrier diffusion length of the AlGaInP material system, devices without sidewall passivation suffered from high leakage and severe drop in external quantum efficiency (EQE). By employing ALD sidewall treatments, the 20×20 µm2 µLEDs resulted in greater light output power, size-independent leakage current density, and lower ideality factor. The forward current-voltage characteristic was enhanced by using surface pretreatment. Furthermore, ALD sidewall treatments recovered the EQE of the 20×20 µm2 devices more than 150%. This indicated that AlGaInP µLEDs with ALD sidewall treatments can be used as the red emitter for full-color µLED display applications.
Chemical etching and Al2O3 dielectric passivation were used to minimize nonradiative sidewall defects in InGaN/GaN microLEDs (mesa diameter = 2–100 μm), resulting in an increase in external quantum efficiency (EQE) as the LED size was decreased. Peak EQEs increased from 8%–10% to 12%–13.5% for mesa diameters from 100 μm to 2 μm, respectively, and no measurable leakage currents were seen in current density–voltage (J–V) characteristics. The position and shape of EQE curves for all devices were essentially identical, indicating size-independent ABC model (Shockley–Read–Hall, radiative, and Auger recombination) coefficients-behavior that is not typical of microLEDs as the size decreases. These trends can be explained by enhancement in light extraction efficiency (LEE), which is only observable when sidewall defects are minimized, for the smallest LED sizes. Detailed ray-tracing simulations substantiate the LEE enhancements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.