Warburg effect is an emerging hallmark of cancer cells with pyruvate kinase M2 (PKM2) as its key regulator. Curcumin is an extensively-studied anti-cancer compound, however, its role in affecting cancer metabolism remains poorly understood. Herein, we show that curcumin inhibits glucose uptake and lactate production (Warburg effect) in a variety of cancer cell lines by down-regulating PKM2 expression, via inhibition of mTOR-HIF1α axis. Stable PKM2 silencing revealed that PKM2 is required for Warburg effect and proliferation of cancer cells. PKM2 over-expression abrogated the effects of curcumin, demonstrating that inhibition of Warburg effect by curcumin is PKM2-mediated. High PKM2 expression correlated strongly with poor overall survival in cancer, suggesting the requirement of PKM2 in cancer progression. The study unravels novel PKM2-mediated inhibitory effect of curcumin on metabolic capacities of cancer cells. To the best of our knowledge, this is the first study linking curcumin with PKM2-driven cancer glycolysis, thus, providing new perspectives into the mechanism of its anticancer activity.
SummaryPolyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large‐scale PHA production is the cost of carbon substrate for PHA‐producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food‐related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food‐derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs.
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer with limited treatment modalities and poor prognosis. Metabolic reprogramming in cancer is considered a hallmark of therapeutic relevance. Here, we report disruption of metabolic reprogramming in TNBC cells by silibinin via modulation of EGFR-MYC-TXNIP signaling. Metabolic assays combined with LC-MS-based metabolomics revealed inhibition of glycolysis and other key biosynthetic pathways by silibinin, to induce metabolic catastrophe in TNBC cells. Silibinin-induced metabolic suppression resulted in decreased cell biomass, proliferation, and stem cell properties. Mechanistically, we identify EGFR-MYC-TXNIP as an important regulator of TNBC metabolism and mediator of inhibitory effects of silibinin. Highlighting the clinical relevance of our observations, the analysis of METABRIC dataset revealed deregulation of EGFR-MYC-TXNIP axis in TNBC and association of EGFR high-MYC high-TXNIP low signature with aggressive glycolytic metabolism and poor disease-specific and metastasisfree survival. Importantly, combination treatment of silibinin or 2deoxyglucose (glycolysis inhibitor) with paclitaxel synergistically inhibited proliferation of TNBC cells. Together, our results highlight the importance of EGFR-MYC-TXNIP axis in regulating TNBC metabolism, demonstrate the anti-TNBC activity of silibinin, and argue in favor of targeting metabolic vulnerabilities of TNBC, at least in combination with mainstay chemotherapeutic drugs, to effectively treat TNBC patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.