SummaryPolyhydroxyalkanoates (PHAs) are biopolymers with desirable material properties similar to petrochemically derived plastics. PHAs are naturally produced by a wide range of microorganisms as a carbon storage mechanism and can accumulate to significantly high levels. PHAs are an environmentally friendly alternative to their petroleum counterparts because they can be easily degraded, potentially reducing the burden on municipal waste systems. Nevertheless, widespread use of PHAs is not currently realistic due to a variety of factors. One of the major constraints of large‐scale PHA production is the cost of carbon substrate for PHA‐producing microbes. The cost of production could potentially be reduced with the use of waste carbon from food‐related processes. Food wastage is a global issue and therefore harbours immense potential to create valuable bioproducts. This article's main focus is to examine the state of the art of converting food‐derived waste into carbon substrates for microbial metabolism and subsequent conversion into PHAs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.