The increasing prevalence of Internet of Things (IoT) devices has made it inevitable that their pertinence to digital forensic investigations will increase into the foreseeable future. These devices produced by various vendors often posses limited standard interfaces for communication, such as USB ports or WiFi/Bluetooth wireless interfaces. Meanwhile, with an increasing mainstream focus on the security and privacy of user data, built-in encryption is becoming commonplace in consumer-level computing devices, and IoT devices are no exception. Under these circumstances, a significant challenge is presented to digital forensic investigations where data from IoT devices needs to be analysed.This work explores the electromagnetic (EM) side-channel analysis literature for the purpose of assisting digital forensic investigations on IoT devices. EM side-channel analysis is a technique where unintentional electromagnetic emissions are used for eavesdropping on the operations and data handling of computing devices. The non-intrusive nature of EM side-channel approaches makes it a viable option to assist digital forensic investigations as these attacks require, and must result in, no modification to the target device. The literature on various EM side-channel analysis attack techniques are discussed -selected on the basis of their applicability in IoT device investigation scenarios. The insight gained from the background study is used to identify promising future applications of the technique for digital forensic analysis on IoT devices -potentially progressing a wide variety of currently hindered digital investigations.
Internet of Things (IoT) devices have expanded the horizon of digital forensic investigations by providing a rich set of new evidence sources. IoT devices includes health implants, sports wearables, smart burglary alarms, smart thermostats, smart electrical appliances, and many more. Digital evidence from these IoT devices is often extracted from third party sources, e.g., paired smartphone applications or the devices' back-end cloud services. However vital digital evidence can still reside solely on the IoT device itself. The specifics of the IoT device's hardware is a black-box in many cases due to the lack of proven, established techniques to inspect IoT devices. This paper presents a novel methodology to inspect the internal software activities of IoT devices through their electromagnetic radiation emissions during live device investigation. When a running IoT device is identified at a crime scene, forensically important software activities can be revealed through an electromagnetic side-channel analysis (EM-SCA) attack. By using two representative IoT hardware platforms, this work demonstrates that cryptographic algorithms running on high-end IoT devices can be detected with over 82% accuracy, while minor software code differences in low-end IoT devices could be detected over 90% accuracy using a neural network-based classifier. Furthermore, it was experimentally demonstrated that malicious modification of the stock firmware of an IoT device can be detected through machine learning-assisted EM-SCA techniques. These techniques provide a new investigative vector for digital forensic investigators to inspect IoT devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.