Higher initial dose rate and simplifying HDR room treatment of 169Yb element among other brachytherapy sources has led to investigating its feasibility as high‐dose‐rate seed. In this work, Monte Carlo calculation was performed to obtain dosimetric parameters of 169Yb, Model M42 source at different radial distances according to AAPM TG‐43U1 and HEBD Report about HDR sources in both air vacuum and spherical homogeneous water phantom. The deposited energy resulted by FLUKA as Monte Carlo code using binning estimators around 169Yb source was converted into radial dose rate distribution in polar coordinates surrounding the brachytherapy source. The results indicate a dose rate constant of 1.14±0.04.2emcGy.h−1.U−1 with approximate uncertainty of 0.04%, air kerma strength, 1.082±2.6normalE−06.2emnormalU.mCi−1 and anisotropy function ranging from 0.386 to 1.00 for radial distances of 0.5–10 cm and polar angles of 0°–180°. Overall, FLUKA dosimetric outputs were benchmarked with those published by Cazeca et al. via MCNP5 as one of validate dosimetry datasets related to 169Yb HDR source. As a result, it seems that FLUKA code can be applicable as a valuable tool to Monte Carlo evaluation of novel HDR brachytherapy sources.PACS number: 87.15.ak
A (142)Pr CTRI was proposed for brachytherapy of prostate cancer. The dosimetric calculations by the experimental measurements and Monte Carlo simulation were performed to fulfill the requirements according to the American Association of Physicists in Medicine recommendations before the clinical use of new brachytherapy sources. The characteristics of the suggested source were compared with those of the previously proposed (142)Pr glass seed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.