The early detection of bone microdamages is crucial to make informed decisions about the therapy and taking precautionary treatments to avoid catastrophic fractures. Conventional computed tomography (CT) imaging faces obstacles in detecting bone microdamages due to the strong self‐attenuation of photons from bone and poor spatial resolution. Recent advances in CT technology as well as novel imaging probes can address this problem effectively. Herein, the bone microdamage imaging is demonstrated using ligand‐directed nanoparticles in conjunction with photon counting spectral CT. For the first time, Gram‐scale synthesis of hafnia (HfO2) nanoparticles is reported with surface modification by a chelator moiety. The feasibility of delineating these nanoparticles from bone and soft tissue of muscle is demonstrated with photon counting spectral CT equipped with advanced detector technology. The ex vivo and in vivo studies point to the accumulation of hafnia nanoparticles at microdamage site featuring distinct spectral signal. Due to their small sub‐5 nm size, hafnia nanoparticles are excreted through reticuloendothelial system organs without noticeable aggregation while not triggering any adverse side effects based on histological and liver enzyme function assessments. These preclinical studies highlight the potential of HfO2‐based nanoparticle contrast agents for skeletal system diseases due to their well‐placed K‐edge binding energy.
A : This paper outlines image domain material decomposition algorithms that have been routinely used in MARS spectral CT systems. These algorithms (known collectively as MARS-MD) are based on a pragmatic heuristic for solving the under-determined problem where there are more materials than energy bins. This heuristic contains three parts: (1) splitting the problem into a number of possible sub-problems, each containing fewer materials; (2) solving each sub-problem; and (3) applying rejection criteria to eliminate all but one sub-problem's solution. An advantage of this process is that different constraints can be applied to each sub-problem if necessary. In addition, the result of this process is that solutions will be sparse in the material domain, which reduces crossover of signal between material images. Two algorithms based on this process are presented: the Segmentation variant, which uses segmented material classes to define each subproblem; and the Angular Rejection variant, which defines the rejection criteria using the angle between reconstructed attenuation vectors.
Higher initial dose rate and simplifying HDR room treatment of 169Yb element among other brachytherapy sources has led to investigating its feasibility as high‐dose‐rate seed. In this work, Monte Carlo calculation was performed to obtain dosimetric parameters of 169Yb, Model M42 source at different radial distances according to AAPM TG‐43U1 and HEBD Report about HDR sources in both air vacuum and spherical homogeneous water phantom. The deposited energy resulted by FLUKA as Monte Carlo code using binning estimators around 169Yb source was converted into radial dose rate distribution in polar coordinates surrounding the brachytherapy source. The results indicate a dose rate constant of 1.14±0.04.2emcGy.h−1.U−1 with approximate uncertainty of 0.04%, air kerma strength, 1.082±2.6normalE−06.2emnormalU.mCi−1 and anisotropy function ranging from 0.386 to 1.00 for radial distances of 0.5–10 cm and polar angles of 0°–180°. Overall, FLUKA dosimetric outputs were benchmarked with those published by Cazeca et al. via MCNP5 as one of validate dosimetry datasets related to 169Yb HDR source. As a result, it seems that FLUKA code can be applicable as a valuable tool to Monte Carlo evaluation of novel HDR brachytherapy sources.PACS number: 87.15.ak
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.