This paper describes an optimization study of a spherical composite submersible pressure hull employing a genetic algorithm (GA) in ANSYS. A total of five lay-up arrangements were optimized for three unidirectional composites carbon/epoxy, glass/epoxy, and boron/epoxy. The minimization of the buoyancy factor ( B . F ) was selected as the design optimization objective. The Tsai-Wu and Tsai-Hill failure criteria and buckling strength factor ( λ ) were used as the material failure and instability constraints. To determine the effect of geometric non-linearity and imperfections on the optimized design, a non-linear buckling analysis was also carried out for one selected optimized design in ABAQUS. The non-linear buckling analysis was carried out using the modified RIKS procedure, in which the imperfection size changed from 1 to 10 mm. A maximum decrease of 65.937% in buoyancy factor ( B . F ) over an equivalent spherical steel pressure hull was computed for carbon/epoxy. Moreover, carbon/epoxy displayed larger decreases in buoyancy factor ( B . F ) in the case of 4 out of a total of 5 lay-up arrangements. The collapse depth decreased from 517.95 m to 412.596 m for a 5 mm lowest mode imperfection. Similarly, the collapse depth decreased from 522.39 m to 315.6018 for a 5 mm worst mode imperfection.
In this paper, a novel concept designed of a multi-legged underwater manned seabed walking robot is presented. The robot will be used in both shallow water current (1–2 m/sec) and deep water up to 500 m. It is powered by an external electric power source through tether cable. It walks on the seabed with six legs, which makes it distinct from conventional screw-propelled underwater robots. It can walk calmly without making the water turbid. Two anterior arms act as manipulators. All leg joints and manipulators are controlled by Brushless Direct Current Motors. Motivation for this concept comes from soldier crab that walk mostly forward and has an egg-shaped body. It is operated by a pilot sitting in a pressurized cabin, and promptly control operations of the robot and manipulator. Preliminary design of the pressurized cabin, using an empirical formula, “ASME PVHO-1 2007” standard, and validation was carried out through ANSYS Workbench. Hydrodynamic forces acting on the robot body and legs are utilized to withstand the water current and external forces to adjust legs and body posture for stability. Buoyancy rules are employed to control its rising and diving motion. All key technologies employed in the development of the robot and their approaching methods are explained. It will provide a safe operation space for humans in underwater operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.