A B S T R A C TLectins are proteins with a high degree of stereospecificity to recognize various sugar structures and form reversible linkages upon interaction with glyco-conjugate complexes. These are abundantly found in plants, animals and many other species and are known to agglutinate various blood groups of erythrocytes. Further, due to the unique carbohydrate recognition property, lectins have been extensively used in many biological functions that make use of protein-carbohydrate recognition like detection, isolation and characterization of glycoconjugates, histochemistry of cells and tissues, tumor cell recognition and many more. In this review, we have summarized the immunomodulatory effects of plant lectins and their effects against diseases, including antimicrobial action. We found that many plant lectins mediate its microbicidal activity by triggering host immune responses that result in the release of several cytokines followed by activation of effector mechanism. Moreover, certain lectins also enhance the phagocytic activity of macrophages during microbial infections. Lectins along with heat killed microbes can act as vaccine to provide long term protection from deadly microbes. Hence, lectin based therapy can be used as a better substitute to fight microbial diseases efficiently in future.
Recently, we have demonstrated that microRNA-31 (miR-31) overexpression is inherent to radiation-induced cell death in the highly radioresistant Sf9 insect cells, and regulates pro-apoptotic Bax translocation to mitochondria. In the present study, we report that at sub-lethal radiation doses for Sf9 cells, miR-31 is significantly downregulated and is tightly regulated by an unusual mechanism involving p53. While ectopic overexpression of a well-conserved Sfp53 caused typical apoptosis, radiation-induced p53 accumulation observed selectively at sub-lethal doses failed to induce cell death. Further investigation of this paradoxical response revealed an intriguing phenomenon that sub-lethal radiation doses result in accumulation of a ‘hyper-phosphorylated’ Sfp53, which in turn binds to miR-31 genomic location and suppresses its expression to prevent cell death. Interestingly, priming cells with sub-lethal doses even prevented the apoptosis induced by lethal radiation or ectopic Sfp53 overexpression. On the other hand, silencing p53 increased radiation-induced cell death by inhibiting miR-31 downregulation. This study thus shows the existence of a unique radiation-responsive ‘p53 gateway’ preventing miR-31-mediated apoptosis in Sf9 cells. Since Sfp53 has a good functional homology with human p53, this study may have significant implications for effectively modulating the mammalian cell radioresistance.
Challenges in metabolomics for a given spectrum of disease are more or less comparable, ranging from the accurate measurement of metabolite abundance, compound annotation, identification of unknown constituents, and interpretation of untargeted and analysis of high throughput targeted metabolomics data leading to the identification of biomarkers. However, metabolomics approaches in cancer studies specifically suffer from several additional challenges and require robust ways to sample the cells and tissues in order to tackle the constantly evolving cancer landscape. These constraints include, but are not limited to, discriminating the signals from given cell types and those that are cancer specific, discerning signals that are systemic and confounded, cell culture‐based challenges associated with cell line identities and media standardizations, the need to look beyond Warburg effects, citrate cycle, lactate metabolism, and identifying and developing technologies to precisely and effectively sample and profile the heterogeneous tumor environment. This review article discusses some of the current and pertinent hurdles in cancer metabolomics studies. In addition, it addresses some of the most recent and exciting developments in metabolomics that may address some of these issues. The aim of this article is to update the oncometabolomics research community about the challenges and potential solutions to these issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.