With the rapid adoption of high-throughput omic approaches to analyze biological samples such as genomics, transcriptomics, proteomics, and metabolomics, each analysis can generate tera- to peta-byte sized data files on a daily basis. These data file sizes, together with differences in nomenclature among these data types, make the integration of these multi-dimensional omics data into biologically meaningful context challenging. Variously named as integrated omics, multi-omics, poly-omics, trans-omics, pan-omics, or shortened to just 'omics', the challenges include differences in data cleaning, normalization, biomolecule identification, data dimensionality reduction, biological contextualization, statistical validation, data storage and handling, sharing, and data archiving. The ultimate goal is towards the holistic realization of a 'systems biology' understanding of the biological question in hand. Commonly used approaches in these efforts are currently limited by the 3 i's - integration, interpretation, and insights. Post integration, these very large datasets aim to yield unprecedented views of cellular systems at exquisite resolution for transformative insights into processes, events, and diseases through various computational and informatics frameworks. With the continued reduction in costs and processing time for sample analyses, and increasing types of omics datasets generated such as glycomics, lipidomics, microbiomics, and phenomics, an increasing number of scientists in this interdisciplinary domain of bioinformatics face these challenges. We discuss recent approaches, existing tools, and potential caveats in the integration of omics datasets for development of standardized analytical pipelines that could be adopted by the global omics research community.
BackgroundHevea brasiliensis, a member of the Euphorbiaceae family, is the major commercial source of natural rubber (NR). NR is a latex polymer with high elasticity, flexibility, and resilience that has played a critical role in the world economy since 1876.ResultsHere, we report the draft genome sequence of H. brasiliensis. The assembly spans ~1.1 Gb of the estimated 2.15 Gb haploid genome. Overall, ~78% of the genome was identified as repetitive DNA. Gene prediction shows 68,955 gene models, of which 12.7% are unique to Hevea. Most of the key genes associated with rubber biosynthesis, rubberwood formation, disease resistance, and allergenicity have been identified.ConclusionsThe knowledge gained from this genome sequence will aid in the future development of high-yielding clones to keep up with the ever increasing need for natural rubber.
Rationale : Colorectal cancer (CRC) is a malignant tumor with the third highest morbidity rate among all cancers. Driven by the host's genetic makeup and environmental exposures, the gut microbiome and its metabolites have been implicated as the causes and regulators of CRC pathogenesis. We assessed human fecal samples as noninvasive and unbiased surrogates to catalog the gut microbiota and metabolome in patients with CRC. Methods : Fecal samples collected from CRC patients (CRC group, n = 50) and healthy volunteers (H group, n = 50) were subjected to microbiome (16S rRNA gene sequencing) and metabolome (gas chromatography-mass spectrometry, GC-MS) analyses. The datasets were analyzed individually and integrated for combined analysis using various bioinformatics approaches. Results : Fecal metabolomic analysis led to the identification of 164 metabolites spread across 40 metabolic pathways in both groups. In addition, there were 42 and 17 metabolites specific to the H and CRC groups, respectively. Sequencing of microbial diversity revealed 1084 operational taxonomic units (OTUs) across the two groups, and there was less species diversity in the CRC group than in the H group. Seventy-six discriminatory OTUs were identified for the microbiota of H volunteers and CRC patients. Integrated analysis correlated CRC-associated microbes with metabolites, such as polyamines (cadaverine and putrescine). Conclusions : Our results provide substantial evidence of a novel interplay between the gut microbiome and metabolome (i.e., polyamines), which is drastically perturbed in CRC. Microbe-associated metabolites can be used as diagnostic biomarkers in therapeutic explorations.
Multi-omics, variously called integrated omics, pan-omics, and trans-omics, aims to combine two or more omics data sets to aid in data analysis, visualization and interpretation to determine the mechanism of a biological process. Multi-omics efforts have taken center stage in biomedical research leading to the development of new insights into biological events and processes. However, the mushrooming of a myriad of tools, datasets, and approaches tends to inundate the literature and overwhelm researchers new to the field. The aims of this review are to provide an overview of the current state of the field, inform on available reliable resources, discuss the application of statistics and machine/deep learning in multi-omics analyses, discuss findable, accessible, interoperable, reusable (FAIR) research, and point to best practices in benchmarking. Thus, we provide guidance to interested users of the domain by addressing challenges of the underlying biology, giving an overview of the available toolset, addressing common pitfalls, and acknowledging current methods’ limitations. We conclude with practical advice and recommendations on software engineering and reproducibility practices to share a comprehensive awareness with new researchers in multi-omics for end-to-end workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.