The mechanisms of interstitial lung disease (ILD) remain incompletely understood, although recent observations have suggested an important contribution by IL-33. Substantial elevations in IL-33 expression were found in the lungs of patients with idiopathic pulmonary fibrosis and scleroderma lung disease, as well as in the bleomycin injury mouse model. Most of the observed IL-33 expression was intracellular and intranuclear, suggesting involvement of the full-length (fl) protein, but not of the proteolytically processed mature IL-33 cytokine. The effects of flIL-33 on mouse lungs were assessed independently and in combination with bleomycin injury, using recombinant adenovirus-mediated gene delivery. Bleomycin-induced changes were not affected by gene deficiency of the IL-33 receptor T1/ST2. Combined flIL-33 expression and bleomycin injury exerted a synergistic effect on pulmonary lymphocyte and collagen accumulation, which could be explained by synergistic regulation of the cytokines transforming growth factor-β, IL-6, monocyte chemotactic protein-1, macrophage inflammatory protein\x{2013}1α, and tumor necrosis factor-α. By contrast, no increase in the levels of the Th2 cytokines IL-4, IL-5, or IL-13 was evident. Moreover, flIL-33 was found to increase the expression of several heat shock proteins (HSPs) significantly, and in particular HSP70, which is known to be associated with ILD. Thus, flIL-33 is a synergistic proinflammatory and profibrotic regulator that acts by stimulating the expression of several non-Th2 cytokines, and activates the expression of HSP70.
We previously demonstrated that exposure to febrile-range hyperthermia (FRH) accelerates pathogen clearance and increases survival in murine experimental Klebsiella pneumoniae peritonitis. However, FRH accelerates lethal lung injury in a mouse model of pulmonary oxygen toxicity, suggesting that the lung may be particularly susceptible to injurious effects of FRH. In the present study, we tested the hypothesis that, in contrast with the salutary effect of FRH in Gram-negative peritonitis, FRH would be detrimental in multilobar Gram-negative pneumonia. Using a conscious, temperature-clamped mouse model and intratracheal inoculation with K. pneumoniae Caroli strain, we showed that FRH tended to reduce survival despite reducing the 3 day-postinoculation pulmonary pathogen burden by 400-fold. We showed that antibiotic treatment rescued the euthermic mice, but did not reduce lethality in the FRH mice. Using an intratracheal bacterial endotoxin LPS challenge model, we found that the reduced survival in FRH-treated mice was accompanied by increased pulmonary vascular endothelial injury, enhanced pulmonary accumulation of neutrophils, increased levels of IL-1β, MIP-2/CXCL213, GM-CSF, and KC/CXCL1 in the bronchoalveolar lavage fluid, and bronchiolar epithelial necrosis. These results suggest that FRH enhances innate host defense against infection, in part, by augmenting polymorphonuclear cell delivery to the site of infection. The ultimate effect of FRH is determined by the balance between accelerated pathogen clearance and collateral tissue injury, which is determined, in part, by the site of infection.
The purpose of this work was to synthesize and characterize a pH- and temperature-sensitive block copolymer containing repeating sequences from silk (Gly-Ala-Gly-Ala-Gly-Ser) and elastin (Gly-Val-Gly-Val-Pro) protein. The monomer contained one repeat of silk and eight repeat units of elastin, with the first valine in one of the elastin repeats being replaced by glutamic acid. The copolymer was synthesized using genetic engineering techniques. The sensitivity of the copolymer to pH and temperature was examined at various polymer concentrations and ionic strengths. Turbidity measurements were carried out over a temperature range of 20 to 100 degrees C at various pH, concentration, and ionic strength values. The introduction of an ionizable residue (glutamic acid) rendered the copolymer sensitive to changes in pH. The transition termperature (T(t)), the temperature at which the polymer became insoluble upon increase in temperature, was modulated by changing the pH. In general, the T(t) value, was found: (1) to increase with an increase in pH, (2) to decrease with increasing ionic strength, and (3) to decrease with increasing concentration. Results of these studies suggest that by strategic placement of charged amino acids in genetically engineered silk-elastinlike protein block copolymers it is possible to precisely control sensitivity to stimuli such as pH and temperature.
Differentially charged analogues of block copolymers containing repeating sequences from silk (GAGAGS) and elastin (GVGVP) were synthesized using genetic engineering techniques by replacing a valine residue with glutamic acid. The sensitivity to pH and temperature was examined at various polymer concentrations, ionic strengths, and polymer lengths. The polymers transitioned from soluble to precipitate state over narrow temperature ranges. The transition temperature T(t) (the temperature at which half-maximal spectrophotometric absorption was observed) increased with increasing pH up to pH 7.0 and leveled off above this value for the Glu-containing polymer (17E)(11). T(t) was independent of pH for the Val-containing polymer (17V)(11). It decreased with increasing ionic strength, polymer concentration, and polymer length for both polymers. These results suggest that by substituting charged amino acids for neutral amino acids at strategic locations in the polymer backbone and by control of the length of silkelastin-like block copolymers using genetic engineering techniques, it is possible to precisely control sensitivity to pH, temperature, and ionic strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.