To augment the antitumor efficacy and minimize the significant side effects of chemotherapeutic drugs on health organs, a novel albumin-mimicking nanodrug, which is based on zwitterionic poly(glutamatyl lysine-co-cysteine) peptides scaffold, is developed to enhance pH-triggered tumor targeting via prolonging circulation time and accelerating cellular internalization. Results showed that the internalization of the nanodrug by MCF-7 cells is much faster than that by Doxil and even comparable to that by free doxorubicin (Dox) at tumor microenvironmental pH 6.7, whereas the internalization of the nanodrug is only 27.4 ± 7.6% of the Doxil by RAW-264.7 cells. Moreover, the significantly prolonged circulation time of the "stealthy" nanodrug was also comparable to that of the long circulating Doxil. As a result, the accumulation of the nanodrug in the tumor is much higher than that in the liver and kidney before the circulation half-life, which is significantly different from most other nanodrugs accumulated in the liver and kidney in this time scale. The tumor inhibition rate of the nanodrug was much higher than that of Doxil (93.2 ± 3.0% vs 54.2 ± 6.5%) after 18 day treatment, while the average bodyweight of the mice treated by the nanodrug was 26.9 ± 6.7% higher than that by Doxil. This indicated that the synergetic effect of long circulation time and fast cellular internalization of the nanodrug can significantly augment tumor targeting. This method might rejuvenate the traditional chemotherapeutic treatment.
Albumin mimics could be an attractive platform for nanodrug carriers through systematic administration because of high safety and plentiful properties to be adjusted for a high drug efficacy, such as pH-triggered targeting cellular uptake and drug release. In this work, negative-biased zwitterionic nanodrug carriers based on zwitterionic polypeptide chains that mimic albumin were prepared, which have an outermost layer of zwitterionic glutamic acid (E) and lysine (K) pairs with a small amount of aspartic acid (D) to adjust the overall ζ potential. On the other hand, doxorubicin (Dox) was encapsulated in a hydrophobic core by 11-maleimidoundecanoic acid covalently linked with additional cysteine (C) residues on the polypeptide. The results show that the negative-biased zwitterionic nanodrug carriers can sensitively enhance the cellular uptake in responding to a pH change from 7.4 to 6.7 without reversing the ζ potential to a positive charge, leading to accelerating the Dox release rate in a slightly acidic environment through the polypeptide secondary structure change. Moreover, the anionic nanodrug carrier can also be easily enzymatically digested by trypsin for quick drug release. In short, this negative-biased zwitterionic nanodrug delivery vector could be an ideal candidate for a safer tumor inhibition with a high efficacy than conventional synthetic polymer-based ones.
To simplify preparation process and increase the drug-loading capacity of antitumor nanodrugs, doxorubicin-loaded micelles based on zwitterionic oligopeptides were fabricated through two step reactions in mild conditions. Zwitterionic oligopeptides Glu-Lys-Cys-Glu-Lys...
Chemotherapeutic nanodrugs have to penetrate through many biological barriers before reaching the tumor cells. Thus, high stability of the nanocarrier before reaching tumor cells and fast release of the carried drugs in targeted tumor cells are required. In this work, inspired by the intrinsic zwitterionic surface property, mainly formed by glutamic acid and lysine residues, of the plasma protein surface, the zwitterionic poly(glutamyl lysine-co-aspartic acid-cocysteine) peptide (P(EK-D-C)) was synthesized for conjugating n-mercaptoalkanoic acid (MA) with different chain lengths on cysteine residues through a disulfide linkage to load hydrophobic doxorubicin (DOX). The results showed that the slightly negative-biased zwitterionic nanodrugs were very stable in both resistance to nonspecific plasma protein adsorption and prevention of premature DOX release at physiological pH 7.4 due to the zwitterionic polypeptide shell and the sharp contrast in polarity between the shell and DOX-loaded core, while they can quickly release the loaded DOX through responding to both low pH values in the endosome/lysosome and high glutathione concentrations in the tumor cell cytoplasm. Furthermore, the enhanced internalization of these nanodrugs led to about 60% higher in vitro cytotoxicity against MCF-7 cells at pH 6.7 than at pH 7.4, whereas the in vitro cytotoxicity of DOX•HCl at pH 6.7 was only 75% of the value at pH 7.4. In vivo results revealed that the stable nanodrugs conjugated with the long hydrophobic 12-mercaptododecanoic acid had higher tumor inhibition rate and lower systematic toxicity on MCF-7 tumor-bearing mice than the less stable nanodrugs conjugated with the short 8-mercaptooctaoic acid and were significantly superior to DOX•HCl. These results indicate that the combination of high stability in circulation and fast release in tumor cells of nanodrugs can enhance high efficacy targeted chemotherapy. This pH/redox-sensitive zwitterionic polypeptide nanocarrier might provide an excellent vehicle for solid tumor treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.