Chemotherapeutic nanodrugs have to penetrate through many biological barriers before reaching the tumor cells. Thus, high stability of the nanocarrier before reaching tumor cells and fast release of the carried drugs in targeted tumor cells are required. In this work, inspired by the intrinsic zwitterionic surface property, mainly formed by glutamic acid and lysine residues, of the plasma protein surface, the zwitterionic poly(glutamyl lysine-co-aspartic acid-cocysteine) peptide (P(EK-D-C)) was synthesized for conjugating n-mercaptoalkanoic acid (MA) with different chain lengths on cysteine residues through a disulfide linkage to load hydrophobic doxorubicin (DOX). The results showed that the slightly negative-biased zwitterionic nanodrugs were very stable in both resistance to nonspecific plasma protein adsorption and prevention of premature DOX release at physiological pH 7.4 due to the zwitterionic polypeptide shell and the sharp contrast in polarity between the shell and DOX-loaded core, while they can quickly release the loaded DOX through responding to both low pH values in the endosome/lysosome and high glutathione concentrations in the tumor cell cytoplasm. Furthermore, the enhanced internalization of these nanodrugs led to about 60% higher in vitro cytotoxicity against MCF-7 cells at pH 6.7 than at pH 7.4, whereas the in vitro cytotoxicity of DOX•HCl at pH 6.7 was only 75% of the value at pH 7.4. In vivo results revealed that the stable nanodrugs conjugated with the long hydrophobic 12-mercaptododecanoic acid had higher tumor inhibition rate and lower systematic toxicity on MCF-7 tumor-bearing mice than the less stable nanodrugs conjugated with the short 8-mercaptooctaoic acid and were significantly superior to DOX•HCl. These results indicate that the combination of high stability in circulation and fast release in tumor cells of nanodrugs can enhance high efficacy targeted chemotherapy. This pH/redox-sensitive zwitterionic polypeptide nanocarrier might provide an excellent vehicle for solid tumor treatment.