The frequent usage of figurative language on online social networks, especially on Twitter, has the potential to mislead traditional sentiment analysis and recommender systems. Due to the extensive use of slangs, bashes, flames, and non-literal texts, tweets are a great source of figurative language, such as sarcasm, irony, metaphor, simile, hyperbole, humor, and satire. Starting with a brief introduction of figurative language and its various categories, this article presents an in-depth survey of the state-of-the-art techniques for computational detection of seven different figurative language categories, mainly on Twitter. For each figurative language category, we present details about the characterizing features, datasets, and state-of-the-art computational detection approaches. Finally, we discuss open challenges and future directions of research for each figurative language category.
Adversaries and anti-social elements have exploited the rapid proliferation of computing technology and online social media in the form of novel security threats, such as fake profiles, hate speech, social bots, and rumors. The hate speech problem on online social networks (OSNs) is also widespread. The existing literature has machine learning approaches for hate speech detection on OSNs. However, the effectiveness of contextual information at different orientations is understudied. This study presents a novel Convolutional, BiGRU, and Capsule network-based deep learning model, HCovBi-Caps, to classify the hate speech. The proposed model is evaluated over two Twitter-based benchmark datasets -DS1(balanced) and DS2(unbalanced) with the best performance of 0.90, 0.80, and 0.84 respectively considering precision, recall, and f-score over unbalanced dataset. In terms of training and validation accuracy, the proposed model shows the best performance of 0.93 and 0.90, respectively, over the unbalanced dataset. In comparative evaluation, HCovBi-Caps demonstrates a significantly better performance than state-of-the-art approaches. In addition, HCovBi-Caps shows comparatively better performance over the unbalanced dataset. We also investigate the impact of different hyperparameters on the efficacy of HCovBi-Caps to ascertain the selection of their values. We observed that a higher value of routing iterations adversely affects the model performance, whereas a higher value of capsule dimension improves the performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.