Cisplatin (CP) is known as one of the most potent chemotherapeutic antitumor drugs. The tissue-specific toxicity of CP in the kidneys is well documented. However, at higher doses less common toxic effects such as hepatotoxicity may arise. Since CP remains one of the most effective antineoplastic drug used in chemotherapy, strategies to protect tissues against CP toxicity are of clinical interest. Recently, ω-3 polyunsaturated fatty acids (PUFAs) from certain plants/seeds notably flaxseed have shown numerous health benefits. In view of this, the present study investigates the protective effect of flaxseed oil (FXO) on CP-induced damage in liver. Rats were pre-fed normal diet and the diet rich in FXO for 10 days and then a single dose of CP (6 mg/kg body weight) was administered intraperitoneally while still on diet. Serum/urine parameters, enzymes of carbohydrate metabolism and oxidative stress were analyzed. CP caused perturbation of the antioxidant defense as reflected by the decrease in the activities of catalase, superoxide dismutase and glutathione peroxidase. Further the activities of various enzymes involved in glycolysis, tricarboxylic acid cycle, gluconeogenesis and hexose monophosphate shunt pathways were determined and were found to be differentially altered by CP treatment. However, these alterations were ameliorated in CP-treated rats fed on FXO. Present results show that dietary supplementation of FXO in CP-treated rats ameliorated CP-induced hepatotoxic and other deleterious effects due to its intrinsic biochemical/antioxidant properties.
Sodium nitroprusside (SNP) a nitric oxide (NO) donor has proven toxic effects. Dietary ω-3 polyunsaturated fatty acid (PUFA) has been shown to reduce the severity of numerous ailments. Present study examined whether intake of fish oil (FO)/flaxseed oil (FXO, Omega Nutrition, St Vancouver, Canada) would have protective effect against SNP-induced toxicity. Male Wistar rats (150 ± 10 g) were used in this study. Initially animals were divided into two groups: one fed on normal diet and the other on 15% FO/FXO for 15 days. On the 16th day, SNP (1.5 mg/kg body weight) was administered intraperitoneally for 7 days daily. After 7 days animals were killed, kidneys were harvested for further analysis. SNP induced nephrotoxicity by increasing serum creatinine and blood urea nitrogen, SNP significantly decreased malate dehydrogenase, glucose-6-phosphatase, fructose-1,6-bisphosphatase and malic enzyme but increased lactate dehydrogenase and glucose-6-phosphate dehydrogenase. Brush border membrane enzymes such as alkaline phosphatase, γ-glutamyl transpeptidase and leucine amino peptidase were also decreased. The activity of catalase and glutathione peroxidase decreased concomitantly with increased lipid peroxidation, indicating that the significant kidney damage has been inflicted by SNP. Feeding of FO and FXO with SNP ameliorated the changes in various parameters caused by SNP. The results of the present study suggest that ω-3 PUFA-enriched FO and FXO from seafoods and plant sources, respectively, are similarly effective in reducing SNP-induced nephrotoxicity and oxidative damage. Thus, vegetarians who cannot consume FO can have similar health benefits from plant-derived ω-3 PUFA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.