Polymer microspheres for controlled release of therapeutic protein from within an implantable scaffold were produced and analysed using complimentary techniques to probe the surface and bulk chemistry of the microspheres. Time of Flight - Secondary Ion Mass Spectrometry (ToF-SIMS) surface analysis revealed a thin discontinuous film of polyvinyl alcohol (PVA) surfactant (circa 4.5 nm thick) at the surface which was readily removed under sputtering with C(60). Atomic Force Microscopy (AFM) imaging of microspheres before and after sputtering confirmed that the PVA layer was removed after sputtering revealing poly(lactic-co-glycolic) acid(PLGA). Scanning electron microscopy showed the spheres to be smooth with some shallow and generally circular depressions, often with pores in their central region. The occurrence of the protein at the surface was limited to areas surrounding these surface pores. This surface protein distribution is believed to be related to a burst release of the protein on dissolution. Analysis of the bulk properties of the microspheres by confocal Raman mapping revealed the 3D distribution of the protein showing large voids within the pores. Protein was found to be adsorbed at the interface with the PLGA oil phase following deposition on evaporation of the solvent. Protein was also observed concentrated within pores measuring approximately 2 μm across. The presence of protein in large voids and concentrated pores was further scrutinised by ToF-SIMS of sectioned microspheres. This paper demonstrates that important information for optimisation of such complex bioformulations, including an understanding of the release profile can be revealed by complementary surface and bulk analysis allowing optimisation of the therapeutic effect of such formulations.
Toward the development of drug carriers that are capable of crossing biological membranes, controlled emulsion polymerisation has been utilised to produce nanoparticulate carriers from the combination of poly(alkyl cyanoacrylate) and alkylglyceryl dextran to a molecular structure designed to combine the non-immunogenic and stabilising properties of dextran with the demonstrated permeation enhancing ability of alkylglycerols. To this aim, a systematic series of alkylglyceryl dextrans have been synthesised and functionalised with ethyl or butyl cyanoacrylates to form stable polymeric nanocarriers (100-500 nm). Results of investigations into their capability to act as controlled-release devices and their cytotoxicity against bEnd3 cells are reported.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.