The quinazoline derivatives (3-chloro-4-fluorophenyl)quinazoline-4,6-diamine (2) and (3-bromophenyl)quinazoline-4,6-diamine (3) were labelled with (99m)Tc using the "4 + 1" mixed-ligand system [Tc(NS3)(CN-R)] and the tricarbonyl moiety fac-[Tc(CO)3]+. In the "4 + 1" approach the technetium(iii) is stabilized by a monodentate isocyanide bearing a quinazoline fragment (L1,L2 ) and by the tetradentate tripodal ligand tris(2-mercaptoethyl)-amine (NS3). In the "4 + 1" approach, 99mTc-labelling was performed in a two-step procedure, the complexes [Tc(NS3)(L1)] (7a) and [Tc(NS3)(L2)] (8a) being obtained in about 50-70% yield. In the tricarbonyl approach, the fac-[Tc(CO)3]+ unit is anchored by two different monoanionic chelators bearing the quinazoline derivatives (3-chloro-4-fluorophenyl)quinazoline-4,6-diamine (2) and (3-bromophenyl)quinazoline-4,6-diamine (3). Both chelators have a N2O donor atom set, but one contains a pyrazolyl ring (L5H) and the other contains a pyridine unit (L6H). In both cases the conjugation of the quinazoline to the chelator was done through the secondary amine of the potentially tridentate and monoanionic chelators, the corresponding 99mTc-complexes (10a, 11a) being obtained in quantitative yield. The identities of the 99mTc-labelled quinazolines (7a, 8a, 10a, 11a) were confirmed by comparison with the HPLC profiles of the analogous Re compounds (7, 8, 10, 11). All these Re complexes were characterized by NMR and IR spectroscopy, elemental analysis and in some cases by MS and X-ray diffraction analysis. In vitro studies indicate that the quinazoline fragments, after conjugation to the cyano group (L1, L2) or to the pyrazolyl containing chelator (L5H), as well as the corresponding Re complexes (7, 8, 10) inhibit significantly the EGFR autophosphorylation and also inhibit A431 cell growth. These two effects were also found for the pyridine-containing chelator (L6H) and corresponding Re complex (11), although to a lesser extent.
Photodynamic therapy (PDT) involves the action of photons on photosensitive molecules, where atomic oxygen or OH− molecular species are locally released on pathogenic human cells, which are mainly carcinogenic, thus causing cell necrosis. The efficacy of PDT depends on the local nanothermodynamic conditions near the cell/nanodrug system that control both the level of intracellular translocation of nanoparticles in the pathogenic cell and their agglomeration on the cell membrane. Dendrimers are considered one of the most effective and promising drug carriers because of their relatively low toxicity and negligible activation of complementary reactions. Polyamidoamine (PAMAM) dendrite delivery of PDT agents has been investigated in the last few years for tumour selectivity, retention, pharmacokinetics and water solubility. Nevertheless, their use as drug carriers of photosensitizing molecules in PDT for cardiovascular disease, targeting the selective necrosis of macrophage cells responsible for atheromatous plaque growth, has never been investigated. Furthermore, the level of aggregation, translocation and nanodrug delivery efficacy of PAMAM dendrimers or PAMAM/zinc phthalocyanine (ZnPc) conjugates on human atheromatous tissue and endothelial cells is still unknown.In this work, the aggregation of PAMAM zero generation dendrimers (G0) acting as drug delivery carriers, as well as conjugated G0 PAMAM dendrimers with a ZnPc photosensitizer, to symptomatic and asymptomatic human carotid tissues was investigated by using atomic force microscopy (AFM). For the evaluation of the texture characteristics of the AFM images, statistical surface morphological and fractal analytical methodologies and Minkowski functionals were used. All statistical quantities showed that the deposition of nanodrug carriers on healthy tissue has an inverse impact when comparing to the deposition on atheromatous tissue with different aggregation features between G0 and G0/ZnPc nanoparticles and with considerably larger G0/ZnPc aggregations on the atheromatous plaque. The results highlight the importance of using PAMAM dendrimer carriers as a novel and promising PDT platform for atherosclerosis therapies.Electronic supplementary materialThe online version of this article (doi:10.1186/s11671-015-0904-5) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.