Nowadays, there is a market need that is pushing manufacturers to support more sustainable product designs regardless of any crisis. Two important lessons that society inferred from the COVID-19 pandemic are that the industry needs an improved collaboration efficiency that can handle such emergencies and improve its resource conservation to avoid having shortages. Additive manufacturing technologies use 3D object scanners to direct hardware to deposit material, layer upon layer, in precise geometric shapes, and are positioned to provide a disruptive transformation in how products are designed and manufactured. They can provide for the planet in fighting against crisis from a materials and applications perspective. In this context, the optimization and production of emergency ventilators in health systems were investigated with plans for 3D printing received from the University of Illinois Urbana–Champaign. An evaluation of the printability of CAD files and a partial redesign to limit dimensional variability, acceptable surface finish, and a more efficient printing process were performed. Six parts of the design were redesigned to make printing easier, faster, and less expensive. In the case of the O2 inlet attachment, the necessary supports were difficult to remove due to the part’s geometry, leading to redesign. The modulator top and bottom part, the patient tee, the manometer body, and the pop-off valve cap were also redesigned in order to avoid dimensional variability and possible rough surfaces. Metallic and thermoplastic composite ventilators were produced and then tested in real operating conditions, such as in a hospital setting with a realistic oxygen supply. The preliminary findings are promising compared to the initial design, both in terms of construction quality and performance such as exhalation rate adjustment and emergency valve operation. Also, a combination of manufacturing technologies was evaluated. The modifications allowed optimal casting (injection molding) of the parts and therefore faster production, instead of printing each part, when high output is required.
A statistical investigation based on a Markov chain theory of polarity formation applied to channel-type inclusion compounds loaded with both dipolar A-π -D and non-polar N-π -N (N: A or D) guests is presented. The key parameters effecting polarity formation are identified and their effects are explored. A number of paradoxes are set out and an attempt to explain the mechanisms behind them is made: dependence of macroscopic polarity on orientational selectivity induced by intermolecular interactions, tuning of polarity through (i) the concentration of nonpolar guest and (ii) growth temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.