Evaluation of hypotheses that relate environmental to evolutionary change across the Ediacaran-Cambrian transition has been hampered by a dearth of sections that preserve both the last appearance of Ediacaran body fossils and the first appearance of Treptichnus pedum within carbonate-rich strata suitable for chemostratigraphic studies. Here, we report two new exceptionally preserved latest Ediacaran fossil assemblages from the Deep Spring Formation at Mount Dunfee, Nevada (USA). Further, we report these occurrences in a high-resolution carbon isotope chemostratigraphic framework, permitting correlation on a regional and global scale. The lower of the two horizons, at the base of the Deep Spring Formation, hosts a body fossil assemblage that includes Gaojiashania, other vermiform body fossils, and possible Wutubus annularis interbedded with Cloudina shell beds. The upper of the two fossil horizons, in the Esmeralda Member of the Deep Spring Formation, contains Conotubus and occurs within the basal Cambrian negative carbon isotope excursion, establishing it as the youngest Ediacaran fossil assemblage discovered to date. This is the first report of Gaojiashania, Conotubus, and Wutubus in Laurentia, extending the known stratigraphic ranges and biogeographic distributions of these taxa to a global scale. These data refine the relative ages of defining characteristics of the Ediacaran-Cambrian boundary and confirm that a large perturbation to the carbon cycle and surface ocean conditions coincided with the extinction of Ediacaran organisms.
No abstract
Paleogeographic models commonly assume that the supercontinent Rodinia was long-lived, with a static geometry involving Mesoproterozoic links that developed during assembly and persisted until Neoproterozoic rifting. However, Rodinian paleogeography and dynamics of continental separation around its centerpiece, Laurentia, remain poorly constrained. On the western Laurentian margin, geological and geochronological data suggest that breakup did not occur until after 720 Ma. Thus, late Tonian (ca. 780–720 Ma) paleomagnetic data are critical for reconstructing paleogeography prior to dispersal and assessing the proposed stasis of Rodinia. Here, we report new paleomagnetic data from the late Tonian Chuar Group in the Grand Canyon, Arizona. We combined this new data set with reanalyzed existing data to obtain a new paleopole preserved in hematite, the reliability of which is supported by six of the seven (Q1–Q6) Van der Voo reliability quality criteria. In addition, we identified pervasive mid- to high-temperature overprints. This new paleomagnetic pole was incorporated with recent high-precision geochronological data and existing paleomagnetic data to present a new late Tonian Laurentian apparent polar wander path (APWP). Having examined the paleomagnetic data of other cratons, global reconstructions for 775 Ma, 751 Ma, and 716 Ma are presented. These reconstructions are consistent with Australia located near the present southern margin of Laurentia. However, a stringent analysis of the global data set does not support a good match between any major craton and the rifted conjugate margin to western Laurentia. Breakup on the western Laurentian margin may have involved rifting of a continental fragment or a craton with uncertainties in its late Tonian geochronologic and paleomagnetic constraints. Our revised Laurentian APWP will allow for more robust tests of paleogeography and evaluation of the proposed supercontinent Rodinia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.