Tetraploid wheat (Triticum turgidum L. var. durum) cv. ‘Langdon’ (LDN) and its near‐isogenic recombinant substitution line no. 68 (RSL no. 68) carrying the high grain protein gene Gpc‐B1 from emmer wheat, were compared in three greenhouse experiments to establish in which way Gpc‐B1 increases grain protein concentration (GPC). At anthesis, RSL no. 68 had higher soluble protein and amino acids concentrations in the flag leaf than LDN. At maturity, both lines presented a similar above ground biomass and grain yield. However, RSL no. 68 showed a higher total N content in ears, grain and chaff than LDN; N harvest index (NHI) was also higher because of a lower straw N concentration and higher grain N concentration. When both lines were grown with a low N supply, and when N supply was interrupted before anthesis, similar trends were observed but the differences in GPC were smaller. It is concluded that RSL no. 68 accumulates a higher GPC than LDN mainly because of a more efficient N remobilization from the leaves to the ears during grain filling.
Six Argentinian wheat (Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3‐fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short‐term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.
The role of environmental variables on litter decomposition and its nutrient release in Nothofagus antarctica forest in Patagonia is poorly understood. Moreover, in these forests under silvopastoral use there are few antecedents. Litter decomposition and nutrient release of grasses and tree leaves were evaluated under different crown cover and two site quality stands during 480 days. Organic matter decomposition varied with crown cover for both types of litter, achieving mean values of 23 and 34% for maximal and minimal crown cover, respectively. Total transmitted radiation was the main environmental factor explaining 61 and 49% of the variation of grass and tree leaves decay rates, respectively. N, P, and Ca were mineralized during first 60 days in decomposing tree leaves and then immobilized without differences between crown cover. The K was immobilized during the evaluated period. In decomposing grass leaves the results varied according to site quality and time. There was a tendency of nutrient mineralization at the first 120 days and then immobilization. The removal of trees for silvopastoral use of N. antarctica may increase litter decomposition by changing the microclimate, but nutrients release or immobilization was mainly affected for their concentration in decomposing material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.