Diesel exhaust particles (DEP) are known to enhance inflammatory responses in human volunteers. In cultured human bronchial epithelial (16HBE) cells, they induce the release of proinflammatory cytokines after triggering transduction pathways, including nuclear factor (NF)-kappaB activation and mitogen-activated protein kinase (MAPK) phosphorylation. This study compares the effects of native DEP (nDEP), organic extracts of DEP (OE-DEP), and carbonaceous particles, represented by stripped DEP (sDEP) and carbon black particles (CB), in order to clarify their respective roles. OE-DEP and nDEP induce granulocyte macrophage colony-stimulating factor (GM-CSF) release, NF-kappaB activation, and MAPK phosphorylation. The carbonaceous core generally induces less intense effects. Reactive oxygen species are produced in 16HBE cells and are involved in GM-CSF release and in the stimulation of NF-kappaB DNA binding by nDEP and OE-DEP. We demonstrate, for the first time, in airway epithelial cells in vitro that nDEP induce the expression of the CYP1A1, a cytochrome P450 specifically involved in polycyclic aromatic hydrocarbons metabolism, thereby demonstrating the critical role of organic compounds in the DEP-induced proinflammatory response. Understanding the respective contributions of DEP components in these effects is important for vehicle manufacturers in order to improve their exhaust gas post-treatment technologies. In conclusion, the DEP-induced inflammatory response in airway epithelial cells mainly involves organic compounds such as PAH, which induce CYP1A1 gene expression.
Diesel exhaust particles (DEP) induce a proinflammatory response in human bronchial epithelial cells (16HBE) characterized by the release of proinflammatory cytokines after activation of transduction pathways involving MAPK and the transcription factor NF-kappaB. Because cellular effects induced by DEP are prevented by antioxidants, they could be mediated by reactive oxygen species (ROS). Using fluorescent probes, we detected ROS production in bronchial and nasal epithelial cells exposed to native DEP, organic extracts of DEP (OE-DEP), or several polyaromatic hydrocarbons. Carbon black particles mimicking the inorganic part of DEP did not increase ROS production. DEP and OE-DEP also induced the expression of genes for phase I [cytochrome P-450 1A1 (CYP1A1)] and phase II [NADPH quinone oxidoreductase-1 (NQO-1)] xenobiotic metabolization enzymes, suggesting that DEP-adsorbed organic compounds become bioavailable, activate transcription, and are metabolized since the CYP1A1 enzymatic activity is increased. Because NQO-1 gene induction is reduced by antioxidants, it could be related to the ROS generated by DEP, most likely through the activation of the stress-sensitive Nrf2 transcription factor. Indeed, DEP induced the translocation of Nrf2 to the nucleus and increased protein nuclear binding to the antioxidant responsive element. In conclusion, we show that DEP-organic compounds generate an oxidative stress, activate the Nrf2 transcription factor, and increase the expression of genes for phase I and II metabolization enzymes.
Particulate matter (PM) is thought to be responsible for respiratory health problems. Epithelial cells exposed to particles release pro-inflammatory cytokines leading to inflammation of airways. However, the signaling cascades triggered by particles are poorly understood. We demonstrate that PM with an aerodynamic diameter < 2.5 microm (PM2.5) or diesel exhaust particles upregulate the expression of amphiregulin (AR), a ligand of the epidermal growth factor receptor (EGFR), in human bronchial epithelial cells. AR secretion was blocked by an inhibitor of the EGFR tyrosine kinase (AG1478), or a selective mitogen-activated protein (MAP) kinase/extracellular regulated kinase (Erk) inhibitor (PD98059), but not by the p38 MAP kinase inhibitor (SB203580). Thus, AR secretion is mediated through the activation of the EGFR and Erk MAP kinase pathway. In addition, AR secretion was inhibited by the antioxidant N-acetyl cysteine, but not by a neutralizing anti-EGFR, suggesting an EGFR transactivation via oxidative stress. AR may be involved in cytokine secretion, as AR can induce granulocyte macrophage-colony-stimulating factor (GM-CSF) release and a neutralizing anti-EGFR reduces the particle-induced GM-CSF release. This study indicates that PM2.5 induces the expression and secretion of AR, an EGFR ligand contributing to GM-CSF release, which may reflect an important mechanism for sustaining the proinflammatory response.
Fine particulate matter present in urban areas seems to be incriminated in respiratory disorders. The aim of this study was to relate physicochemical characteristics of PM2.5 (particulate matter collected with a 50% efficiency for particles with an aerodynamic diameter of 2.5 microm) to their biological activities toward a bronchial epithelial cell line 16-HBE. Two seasonal sampling campaigns of particles were realized, respectively, in a kerbside and an urban background station in Paris. Sampled-PM2.5 mainly consist of particles with a size below 1 microm and are mainly composed of soot as assessed by analytical scanning electron microscopy. The different PM2.5 samples contrasted in their PAH content, which was the highest in the kerbside station in winter, as well as in their metal content. Kerbside station samples were characterized by the highest Fe and Cu content, which appears correlated to their hydroxyl radical generating properties measured by electron paramagnetic resonance. Particles were compared by their capacity to induce cytotoxicity, intracellular ROS production, and proinflammatory cytokine release (GM-CSF and TNF-alpha). At a concentration of 10 microg/cm2, all samples induced peroxide production and cytokine release to the similar extent in the absence of cytotoxicity. In conclusion, whereas the PM2.5 samples differ by their PAH and metal composition, they induce the same biological responses likely either due to components bioavailability and/ or interactions between PM components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.