Background: Cadmium (Cd) toxicity, which runs across the food chain, is chiefly regulated by in vivo antioxidant defence system or through antioxidant supplementation of biological systems predisposed to this environmental stressor. The present study was designed to examine the role of Anthocleista vogelii leaves in Cd-induced oxidative stress in the serum of Wistar rats through the application of response surface methodology (RSM) and biomonitoring of selective responses: malondialdehyde (MDA), catalase (CAT), superoxide dismutase (SOD), glutathione-s-transferase (GST) and peroxidase (POD) activities, respectively. The cold macerated plant leaves were subjected to fractionation process using methanol-hexane-chloroform (3:2:1 v/v) solvent system such that n-hexane fraction with ample antioxidant levels in terms of total phenolic content (TPC) and total flavonoid content (TFC) among others at p < 0.05 was selected for the study. The study employed central composite design (CCD) with twenty experimental "runs" of male Wistar rats for twenty-eight days, following a week of acclimatization, where n-hexane fraction of A. vogelii (NFAV), cadmium chloride (CdCl 2) and body weights of rats were considered input factors in the study. Results: The study generated five quadratic models, which differed significantly at p < 0.05 for MDA levels as well as CAT, SOD, GST and POD activities in the sera of Wistar rats. The study revealed that exposure to Cd toxicity caused a marked increase (p < 0.05) in serum MDA levels, but a significant inhibition (p < 0.05) of serum SOD, CAT, GST and POD activities. However, Cd interaction with NFAV showed marked amelioration of Cd-induced oxidative stress, which was confirmed by significant decrease in serum MDA levels, but significant increase in serum SOD, CAT, GST and POD activities at p < 0.05 via the response surface plots. The study also confirmed the reliability and adequacy of the models for accurate prediction of the responses since R-squared (R 2) values obtained were greater than 90%. Conclusion: It was inferred from the present study that the adequacy of the models validated the potency of A. vogelii leaves graphically in the amelioration of Cd-induced oxidative stress in the serum of Wistar rats. Hence, the plant was considered a rich source of bioactive compounds with significant antioxidant properties.
In recent years, the search for biologically active compounds from Euphorbia heterophylla in the treatment of different diseases has always been of great interest to researchers. In this present study, we investigated the effect of the aqueous leaf extract of the plant on hepatocytes using animal models. A total of twenty (20) wistar albino rats (150-240g) were used for the study. The rats were randomly divided into four experimental groups (A, B, C & D) comprising five rats per group. The control group was administered deionised water while the treatment groups were orally administered doses of the aqueous leaf extract of the plant(100mg/kg, 200mg/kg and 300mg/kg body weights) by means of a gavage for two weeks. Total protein, albumin, urea nitrogen, alanine aminotransferase(ALT), aspartate aminotransferase(AST) and alkaline phosphatase(ALP) were the biochemical parameters assessed in this study. The results showed no significant difference(p>0.05 in the levels of the aforementioned parameters. The aqueous leaf extract of the plant indicated the presence of carbohydrates, saponins, tannins, flavonoids, alkaloids, terpenoids and steroids, but anthracene derivatives were absent. The results obtained in this study, therefore, justify the traditional use of the plant for food and medicinal purposes respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.