The standard PDDL language for classical planning uses several first-order features, such as schematic actions. Yet, most classical planners ground this first-order representation into a propositional one as a preprocessing step. While this simplifies the design of other parts of the planner, in several benchmarks the grounding process causes an exponential blowup that puts otherwise solvable tasks out of reach of the planners. In this work, we take a step towards planning with lifted representations. We tackle the successor generation task, a key operation in forward-search planning, directly on the lifted representation using well-known techniques from database theory. We show how computing the variable substitutions that make an action schema applicable in a given state is essentially a query evaluation problem. Interestingly, a large number of the action schemas in the standard benchmarks result in acyclic conjunctive queries, for which query evaluation is tractable. Our empirical results show that our approach is competitive with the standard (grounded) successor generation techniques in a few domains and outperforms them on benchmarks where grounding is challenging or infeasible.
Generalized planning aims at computing solutions that work for all instances of the same domain. In this paper, we show that several interesting planning domains possess compact generalized heuristics that can guide a greedy search in guaranteed polynomial time to the goal, and which work for any instance of the domain. These heuristics are weighted sums of state features that capture the number of objects satisfying a certain first-order logic property in any given state. These features have a meaningful interpretation and generalize naturally to the whole domain. Additionally, we present an approach based on mixed integer linear programming to compute such heuristics automatically from the observation of small training instances. We develop two variations of the approach that progressively refine the heuristic as new states are encountered. We illustrate the approach empirically on a number of standard domains, where we show that the generated heuristics will correctly generalize to all possible instances.
Recent research in classical planning has shown the importance of search techniques that operate directly on the lifted representation of the problem, particularly in domains where the ground representation is prohibitively large. In this paper, we show how to compute the additive and maximum heuristics from the lifted representation of a problem. We do this by adapting well-known reachability analysis techniques based on a Datalog formulation of the delete relaxation of the problem. Our adaptation allows us to obtain not only the desired heuristic value, but also other useful heuristic information such as helpful actions. Our empirical evaluation shows that our lifted version of the additive heuristic is competitive with its ground counterpart on most of the standard international competition benchmarks, and significantly outperforms other state-of-the-art lifted heuristic methods in the literature.
Heuristics for lifted planning are not yet as informed as the best heuristics for ground planning. Recent work introduced the idea of using Datalog programs to compute the additive heuristic over lifted tasks. Based on this work, we show how to compute the more informed FF heuristic in a lifted manner. We extend the Datalog program with executable annotations that can also be used to define other delete-relaxation heuristics. In our experiments, we show that a planner using the lifted FF implementation produces state-of-the-art results for lifted planners. It also reduces the gap to state-of-the-art ground planners in domains where grounding is feasible.
Potential heuristics are weighted functions over state features of a planning task. A recent study defines the complexity of a task as the minimum required feature complexity for a potential heuristic that makes a search backtrack-free. This gives an indication of how complex potential heuristics need to be to achieve good results in satisficing planning. However, these results do not directly transfer to optimal planning.In this paper, we empirically study how complex potential heuristics must be to represent the perfect heuristic and how close to perfect heuristics can get with a limited number of features. We aim to identify the practical trade-offs between size, complexity and time for the quality of potential heuristics. Our results show that, even for simple planning tasks, finding perfect potential heuristics might be harder than expected.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.