We introduce Orbits, a novel gaze interaction technique that enables hands-free input on smart watches. The technique relies on moving controls to leverage the smooth pursuit movements of the eyes and detect whether and at which control the user is looking at. In Orbits, controls include targets that move in a circular trajectory in the face of the watch, and can be selected by following the desired one for a small amount of time. We conducted two user studies to assess the technique's recognition and robustness, which demonstrated how Orbits is robust against false positives triggered by natural eye movements and how it presents a hands-free, high accuracy way of interacting with smart watches using off-the-shelf devices. Finally, we developed three example interfaces built with Orbits: a music player, a notifications face plate and a missed call menu. Despite relying on moving controls-very unusual in current HCI interfaces-these were generally well received by participants in a third and final study.
Selection is a canonical task in user interfaces, commonly supported by presenting objects for acquisition by pointing. In this article, we consider motion correlation as an alternative for selection. The principle is to represent available objects by motion in the interface, have users identify a target by mimicking its specific motion, and use the correlation between the system’s output with the user’s input to determine the selection. The resulting interaction has compelling properties, as users are guided by motion feedback, and only need to copy a presented motion. Motion correlation has been explored in earlier work but only recently begun to feature in holistic interface designs. We provide a first comprehensive review of the principle, and present an analysis of five previously published works, in which motion correlation underpinned the design of novel gaze and gesture interfaces for diverse application contexts. We derive guidelines for motion correlation algorithms, motion feedback, choice of modalities, overall design of motion correlation interfaces, and identify opportunities and challenges identified for future research and design.
SmoothMoves is an interaction technique for augmented reality (AR) based on smooth pursuits head movements. It works by computing correlations between the movements of on-screen targets and the user's head while tracking those targets. The paper presents three studies. The first suggests that head based input can act as an easier and more affordable surrogate for eye-based input in many smooth pursuits interface designs. A follow-up study grounds the technique in the domain of augmented reality, and captures the error rates and acquisition times on different types of AR devices: head-mounted (2.6%, 1965ms) and hand-held (4.9%, 2089ms). Finally, the paper presents an interactive lighting system prototype that demonstrates the benefits of using smooth pursuits head movements in interaction with AR interfaces. A final qualitative study reports on positive feedback regarding the technique's suitability for this scenario. Together, these results show SmoothMoves is viable, efficient and immediately available for a wide range of wearable devices that feature embedded motion sensing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.