Pulsed electric field (PEF) is frequently used for intertumoral drug delivery resulting in a well-known anticancer treatment—electrochemotherapy. However, electrochemotherapy is associated with microsecond range of electrical pulses, while nanosecond range electrochemotherapy is almost non-existent. In this work, we analyzed the feasibility of nanosecond range pulse bursts for successful doxorubicin-based electrochemotherapy in vivo. The conventional microsecond (1.4 kV/cm × 100 µs × 8) procedure was compared to the nanosecond (3.5 kV/cm × 800 ns × 250) non-thermal PEF-based treatment. As a model, Sp2/0 tumors were developed. Additionally, basic current and voltage measurements were performed to detect the characteristic conductivity-dependent patterns and to serve as an indicator of successful tumor permeabilization both in the nano and microsecond pulse range. It was shown that nano-electrochemotherapy can be the logical evolution of the currently established European Standard Operating Procedures for Electrochemotherapy (ESOPE) protocols, offering better energy control and equivalent treatment efficacy.
Bovine colostrum (BC) is the first milk produced by lactating cows after parturition. BC is rich in various amino acids, proteins, and fats essential for the nutrition of the neonate calves. Despite the evident beneficial effect of BC on calves, the effect of BC on blood biomarkers is poorly understood. Calves that received BC showed significantly higher body mass at days 7 and 30 (38.54 kg and 43.42 kg, respectively) compared to the colostrum replacer group (p = 0.0064). BC induced greater quantities of blood neutrophils (0.27 × 109/L) and monocytes (4.76 × 109/L) in comparison to the colostrum replacer (0.08 and 0.06 × 109/L, respectively) (p = 0.0001). Animals that received BC showed higher levels of total serum protein (59.16 g/L) and albumin (29.96 g/L) in comparison to the colostrum replacer group (44.34 g/L and 31.58 g/L, respectively). In addition, BC induced greater intestinal mucus production in the Wistar rat model. Collectively, these results demonstrate that BC is important for the growth of calves and that it provides a significant beneficial effect on morphological and biochemical blood parameters.
In this work, a time-dependent and time-independent study on bleomycin-based high-frequency nsECT (3.5 kV/cm × 200 pulses) for the elimination of LLC1 tumours in C57BL/6J mice is performed. We show the efficiency of nsECT (200 ns and 700 ns delivered at 1 kHz and 1 MHz) for the elimination of tumours in mice and increase of their survival. The dynamics of the immunomodulatory effects were observed after electrochemotherapy by investigating immune cell populations and antitumour antibodies at different timepoints after the treatment. ECT treatment resulted in an increased percentage of CD4⁺ T, splenic memory B and tumour-associated dendritic cell subsets. Moreover, increased levels of antitumour IgG antibodies after ECT treatment were detected. Based on the time-dependent study results, nsECT treatment upregulated PD 1 expression on splenic CD4⁺ Tr1 cells, increased the expansion of splenic CD8⁺ T, CD4⁺CD8⁺ T, plasma cells and the proportion of tumour-associated pro inflammatory macrophages. The Linˉ population of immune cells that was increased in the spleens and tumour after nsECT was identified. It was shown that nsECT prolonged survival of the treated mice and induced significant changes in the immune system, which shows a promising alliance of nanosecond electrochemotherapy and immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.