Multisensory polices are known to enhance both state estimation and target tracking. However, in the space of end-to-end sensorimotor control, this multi-sensor outlook has received limited attention. Moreover, systematic ways to make policies robust to partial sensor failure are not well explored. In this work, we propose a specific customization of Dropout, called Sensor Dropout, to improve multisensory policy robustness and handle partial failure in the sensorset. We also introduce an additional auxiliary loss on the policy network in order to reduce variance in the band of potential multi-and uni-sensory policies to reduce jerks during policy switching triggered by an abrupt sensor failure or deactivation/activation. Finally, through the visualization of gradients, we show that the learned policies are conditioned on the same latent states representation despite having diverse observations spaces -a hallmark of true sensor-fusion. Simulation results of the multisensory policy, as visualized in TORCS racing game, can be seen here: https://youtu.be/QAK2lcXjNZc.
The Tactical Driver Behavior modeling problem requires an understanding of driver actions in complicated urban scenarios from rich multimodal signals including video, LiDAR and CAN signal data streams. However, the majority of deep learning research is focused either on learning the vehicle/environment state (sensor fusion) or the driver policy (from temporal data), but not both. Learning both tasks jointly offers the richest distillation of knowledge but presents challenges in the formulation and successful training. In this work, we propose promising first steps in this direction. Inspired by the gating mechanisms in Long Short-Term Memory units (LSTMs), we propose Gated Recurrent Fusion Units (GRFU) that learn fusion weighting and temporal weighting simultaneously. We demonstrate it's superior performance over multimodal and temporal baselines in supervised regression and classification tasks, all in the realm of autonomous navigation. On tactical driver behavior classification using Honda Driving Dataset (HDD), we report 10% improvement in mean Average Precision (mAP) score, and similarly, for steering angle regression on TORCS dataset, we note a 20% drop in Mean Squared Error (MSE) over the state-of-the-art.
Dynamic bipedal walking on discrete terrain, like stepping stones, is a challenging problem requiring feedback controllers to enforce safety-critical constraints. To enforce such constraints in real-world experiments, fast and accurate perception for foothold detection and estimation is needed. In this work, a deep visual perception model is designed to accurately estimate step length of the next step, which serves as input to the feedback controller to enable vision-in-theloop dynamic walking on discrete terrain. In particular, a custom convolutional neural network architecture is designed and trained to predict step length to the next foothold using a sampled image preview of the upcoming terrain at foot impact. The visual input is offered only at the beginning of each step and is shown to be sufficient for the job of dynamically stepping onto discrete footholds. Through extensive numerical studies, we show that the robot is able to successfully autonomously walk for over 100 steps without failure on a discrete terrain with footholds randomly positioned within a step length range of [45 : 85] centimeters.
SUMMARYThis paper discusses the development of an optimal wheel-torque controller for a compliant modular robot. The wheel actuators are the only actively controllable elements in this robot. For this type of robots, wheel-slip could offer a lot of hindrance while traversing on uneven terrains. Therefore, an effective wheel-torque controller is desired that will also improve the wheel-odometry and minimize power consumption. In this work, an optimal wheel-torque controller is proposed that minimizes the traction-to-normal force ratios of all the wheels at every instant of its motion. This ensures that, at every wheel, the least traction force per unit normal force is applied to maintain static stability and desired wheel speed. The lower this is, in comparison to the actual friction coefficient of the wheel-ground interface, the more margin of slip-free motion the robot can have. This formalism best exploits the redundancy offered by a modularly designed robot. This is the key novelty of this work. Extensive numerical and experimental studies were carried out to validate this controller. The robot was tested on four different surfaces and we report an overall average slip reduction of 44% and mean wheel-torque reduction by 16%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.