The growth of population and increase in diseases that cause an enormous demand for biomedical material consumption is a pointer to the pressing need to develop new sustainable biomaterials. Electrospun materials derived from green polymers have gained popularity in recent years for biomedical applications such as tissue engineering, wound dressings, and drug delivery. Among the various bioengineering materials used in the synthesis of a biodegradable polymer, poly(lactic acid) (PLA) has received the most attention from researchers. Hypericum perforatum oil (HPO) has antimicrobial activity against a variety of bacteria. This study aimed to investigate the development of an antibacterial sustainable material based on PLA by incorporating HPO via a simple, low-cost electrospinning method. Chemical, morphological, thermal, thickness and, air permeability properties, and in vitro antibacterial activity of the electrospun nonwoven fabric were investigated. Scanning electron microscopy (SEM) was used to examine the morphology of the electrospun nonwoven fabric, which had bead-free morphology ultrafine fibers. Antibacterial tests revealed that the Hypericum perforatum oil-loaded poly(lactic acid) nonwoven fabrics obtained had high antibacterial efficiency against Escherichia coli and Staphylococcus aureus, indicating a strong potential for use in biomedical applications.
Green electrospun materials are gaining popularity in the quest for a more sustainable environment for human life. Bee pollen (BP) is a valuable apitherapeutic product and has many beneficial features such as antioxidant and antibacterial properties. Alginate is a natural and low-cost polymer. Both natural materials show good compatibility with human tissues for biomedical applications and have no toxic effect on the environment. In this study, bee pollen-loaded sodium alginate and polyvinyl alcohol (SA/PVA) nanofibrous mats were fabricated by the electrospinning technique. The green electrospun nanofibrous mats were analyzed by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), and differential scanning calorimeter (DSC). According to the findings of the study, the toxin-free electrospinning method is suitable for producing green nanomaterial. Because of the useful properties of the bee pollen and the favorable biocompatibility of the alginate fibers, the bee pollen-loaded SA/PVA electrospun mats have the potential for use in a variety of biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.