In this article, for the first time, the electrochemical properties of a novel pyridine derivative, 4‐(2‐(2‐hydroxybenzylidene) hydrazinyl)‐1‐(3‐phenylpropyl) pyridinium bromide (abbreviated as 4‐Pyri), and its interaction with double stranded DNA (dsDNA) was investigated. The interaction between candidate drug molecule (4‐Pyri) and dsDNA was analyzed by examining 4‐Pyri (+0.6 V and +0.8 V) and guanine (+1.0 V) oxidation signal changes with Differential Pulse Voltammetry (DPV) and Cyclic Voltammetry (CV). Electrochemical Impedance Spectroscopy (EIS) was used to show the resistance changes before and after the interaction between 4‐Pyri and dsDNA. We showed that after the interaction with 4‐Pyri, the oxidation currents of guanine decreased dramatically, whereas the intrinsic oxidation currents of 4‐Pyri dramatically increased. 4‐Pyri oxidation current differences before and after the interaction with dsDNA enabled us to determine such interaction separately from guanine oxidation signals. In addition, resistance differences were observed at before and after the interaction with each other that confirmed the possible interaction. In addition, toxicity effect (S%) value, which is an important parameter for electrochemical studies indicated 4‐Pyri's toxicity to dsDNA. Our results demonstrated that 4‐Pyri interacts with dsDNA, and could be used as a potential candidate drug molecule due to its remarkable impact on dsDNA.
A novel, sensitive and selective spectrofluorimetric method was developed for the determination of tamsulosin in spiked human urine and pharmaceutical preparations. The proposed method is based on the reaction of tamsulosin with 1-dimethylaminonaphthalene-5-sulfonyl chloride in carbonate buffer pH 10.5 to yield a highly fluorescent derivative. The described method was validated and the analytical parameters of linearity, limit of detection (LOD), limit of quantification (LOQ), accuracy, precision, recovery and robustness were evaluated. The proposed method showed a linear dependence of the fluorescence intensity on drug concentration over the range 1.22 × 10(-7) to 7.35 × 10(-6) M. LOD and LOQ were calculated as 1.07 × 10(-7) and 3.23 × 10(-7) M, respectively. The proposed method was successfully applied for the determination of tamsulosin in pharmaceutical preparations and the obtained results were in good agreement with those obtained using the reference method.
A sensitive and selective spectrofluorimetric method was developed for the determination of alfu zosin in pharmaceutical preparations and urine. The method is based on reaction of alfuzosin with 1 dime thylaminonaphthalene 5 sulphonyl (dansyl) chloride in carbonate buffer of pH 9.7 to yield a highly fluores cent derivative that is measured at 516 nm after excitation at 405 nm. The developed method was validated according to the criteria for analytical method, showing good performances in terms of linearity, limit of detection (LOD), limit of quantification (LOQ), precision, accuracy, recovery and robustness. The fluores cence intensity versus concentration plot was rectilinear over the range of 25 to 500 ng/mL. The LOD and LOQ were found to be 8 and 25 ng/mL, respectively. The method was successfully applied to the determina tion of alfuzosin in pharmaceutical preparations and urine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.