Background
Apart from infecting a large number of people around the world and causing the death of many people, the COVID-19 pandemic seems to have changed the healthcare processes of other diseases by changing the allocation of health resources and changing people’s access or intention to healthcare systems.
Objective
To compare the incidence of endpoints marking delayed healthcare seeking in medical emergencies, before and during the pandemic.
Methods
Based on a PICO model, medical emergency conditions that need timely intervention was selected to be evaluated as separate panels. In a systematic literature review, PubMed was quarried for each panel for studies comparing the incidence of various medical emergencies before and during the COVID-19 pandemic. Markers of failure/disruption of treatment due to delayed referral were included in the meta-analysis for each panel.
Result
There was a statistically significant increased pooled median time of symptom onset to admission of the acute coronary syndrome (ACS) patients; an increased rate of vasospasm of aneurismal subarachnoid hemorrhage; and perforation rate in acute appendicitis; diabetic ketoacidosis presentation rate among Type 1 Diabetes Mellitus patients; and rate of orchiectomy among testicular torsion patients in comparison of pre-COVID-19 with COVID-19 cohorts; while there were no significant changes in the event rate of ruptured ectopic pregnancy and median time of symptom onset to admission in the cerebrovascular accident (CVA) patients.
Conclusions
COVID-19 has largely disrupted the referral of patients for emergency medical care and patient-related delayed care should be addressed as a major health threat.
Biosurfactants have been widely used for environmental and industrial applications. However, their use in medical field is still limited. Probiotic biosurfactants possess an immense antimicrobial, anti-adhesive, antitumor, and antibiofilm potential. Moreover, they have an additional advantage over conventional microbial surfactants because probiotics are an integral part of normal human microflora and their biosurfactants are innocuous to human. So, they can be effectively exploited for medicinal use. Present review is aimed to discourse the production and biomedical applications of probiotic biosurfactants.
Breast cancer is one of the most important causes of cancer related morbidity and mortality in the world. Along with genetic, environmental factors also play a multifaceted role in the development of disease. Breast contains several bacterial species performing specialized functions. Probiotics, as functional food, play pivotal role against breast cancer development in vivo and in vitro. Current review summarized all the available data related to diet, probiotics, and their association with breast cancer risk along with underlying mechanisms. Presently, it was believed that many of the commercially available probiotic products were safe to use and had some beneficial health effects for the host. Probiotics had a potential to act against breast cancer progression evidenced by many animal model and cell-based experiments. Some probiotics strains may be useful as an adjuvant therapy for breast cancer prevention or treatment, by modulating immune response or breast microbial community. However, large-scale clinical trials and intense research are mandatory to explore probiotics-related metabolic and molecular mechanisms in breast cancer.
ARTICLE HISTORY
Whey proteins in bovine milk are a mixture of globular proteins manufactured from whey which is a byproduct of cheese industry. Whey protein is categorized to contain plethora of healthy components due to wide range of pH, promising nutritional profile with cost effective and diverse functionality. Reportedly there are three categories of whey protein, whey protein concentrate (WPC) (29–89%); whey protein isolate (WPI) 90% and whey protein hydrolysate (WPH) on the basis of proteins present in them. Whey proteins is composed of β-lactoglobulin (45–57%), immunoglobulins (10–15%) α-lactalbumin (15–25%), glicomacropeptide (10–15%), lactoperoxidase (<1%) and lactoferrin nearly (1%). Whey protein plays an important role and is validated to confer anti-inflammatory and immunostimulatory roles related to all metabolic syndromes. According to molecular point of view whey proteins decrease inflammatory cytokines (IL-1α, IL-1β, IL-10 and TNF- α); inhibits ACE and NF-κB expression; promotes Fas signaling and caspase-3 expression; elevates GLP-1, PYY, CCK, G1P and leptin; chelate and binds Fe+3, Mn+3 and Zn+2. In this chapter we will discuss significant biological role of whey proteins related to inflammatory health issues.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.