Many extreme scale scientific applications have workloads comprised of a large number of individual highperformance tasks. The Pilot abstraction decouples workload specification, resource management, and task execution via job placeholders and late-binding. As such, suitable implementations of the Pilot abstraction can support the collective execution of large number of tasks on supercomputers. We introduce RADICAL-Pilot (RP) as a portable, modular and extensible Pilot enabled runtime system. We describe RP's design, architecture and implementation. We characterize its performance and show its ability to scalably execute workloads comprised of tens of thousands heterogeneous tasks on DOE and NSF leadership-class HPC platforms. Specifically, we investigate RP's weak/strong scaling with CPU/GPU, single/multi core, (non)MPI tasks and python functions when using most of ORNL Summit and TACC Frontera. RADICAL-Pilot can be used stand-alone, as well as the runtime for third-party workflow systems.
Very High Resolution satellite and aerial imagery are used to monitor and conduct large scale surveys of ecological systems. Convolutional Neural Networks have successfully been employed to analyze such imagery to detect large animals and salient features. As the datasets increase in volume and number of images, utilizing High Performance Computing resources becomes necessary. In this paper, we investigate three task-parallel, data-driven workflow designs to support imagery analysis pipelines with heterogeneous tasks on HPC. We analyze the capabilities of each design when processing datasets from two use cases for a total of 4,672 satellite and aerial images, and 8.35 TB of data. We experimentally model the execution time of the tasks of the image processing pipelines.We perform experiments to characterize the resource utilization, total time to completion, and overheads of each design. Based on the model, overhead and utilization analysis, we show which design is best suited to scientific pipelines with similar characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.